
Formal Vindications Time Manager:

Technical Specification

Formal Vindications S. L.
Prometheuss Group

Version - Patch

Contents

1 Introduction 1

1.1 Formal Verification . 2

1.2 About time and calendars . 2

1.3 Local time and time zones . 6

2 Formal Vindications Time Manager Behavior 9

2.1 The calendar in The Coq Time Library . 10

2.2 General remarks on the extraction . 11

2.3 Datatypes . 13

2.4 Functions . 15

2.5 Error messages . 29

3 Coq References 31

A Tables 33

B tz Tables 35

1 Introduction

This document contains the Technical Specifications for the Formal Vindications Time Manager (FVTM);
a formally verified library that provides various time-related functions. The main functionalities of FVTM
are verified using the Coq proof assistant and subsequently extracted to OCaml via the program extraction
mechanism.

This document is an approximation to the formal specification in Coq using a semi-formal notation. In
case there is any divergence of this document from the formal specification, the latter prevails over the
former.

One of the main features of FVTM is that this library contains a proper implementation of the Coordinated
Universal Time (UTC) time standard. This means that FVTM supports leap seconds and therefore,
timestamps are obtained with UTC-precision. Furthermore, FVTM also provides functions to manage different
UTC local time zones. These extra functions are directly implemented in OCaml and make use of the tz

database.

To the best of our knowledge, FVTM is the first formally verified time library implementing UTC-time
standard.

1

1.1 Formal Verification

The technology of verified software is founded in the following idea: the software is given by a triple (Σ,Π,∆)
of parts of code written in a formal language – in our case, specifically in the computer language of the Coq
proof assistant.

• Σ is the formal specification, that tells with mathematical precision and rigor what the software should
do. It is completely unambiguous in the strict mathematical sense;

• Π consists of the code implementing algorithms oriented to computational efficiency, the resulting code
should behave according to Σ;

• ∆ is a mathematical proof that the software (Π) does exactly what the formal specification (Σ) says it
should do.

Some functions have an inefficient, more mathematical version in Σ and an efficient, more algorithmic version
in Π. Then the part of ∆ regarding this function is just a proof that both versions coincide (give the same
results to the same arguments). Sometimes, depending on the nature of the function itself, there is just one
implementation in Π, and in Σ the statement of one or several theorems expressing the correctness of the
function; then ∆ is the proof of these theorems.

Coq and OCaml

Coq is a formal proof management system. It provides a formal language to write formal specifications of
algorithms as well as their implementation.

Coq is the result of about 30 years of research. It started in 1984 from an implementation of the Calculus
of Constructions and later was extended to the Calculus of Inductive Constructions; CIC for short. The CIC
logical framework is a constructive theory based on dependent types. Constructive means that in order to prove
that something is true, we need to construct evidence for that. For instance if we want to prove that there is a
number satisfying some property, we need to find such number and show that it indeed satisfies the property.
One of the main benefits of the constructive approach is computability. In more detail, this means that the
proofs built within Coq are algorithms that can be executed on a computer. This allows us to design and
implement algorithms that are guaranteed to behave as expected, in other words, they will never crash, hang
or behave differently than their specification.

Now, since Coq has such a strong mathematical expressiveness, it is not as any other programming language,
and in particular running Coq code is higly inefficient. Thus, we use a tool given by Coq which is called
extraction. The extraction process is the translation of Coq code into another functional programming language
which is meant to be run, in our case, OCaml. Extraction is just an automatic syntactic translation from one
language to another one.

OCaml is an industry-strength functional programming language which is renowned for its robustness and
performance (Coq itself is implemented in OCaml). The main benefits of OCaml reside in its safety. OCaml
is a strongly typed language where the types of all values are checked during compilation to ensure that they
are well defined. Thus, any typing error will be picked up at compile-time by the instead of at run-time.

An important remark is that the extraction process, which is also performed by a software, is not verified,
i.e., there is no proof to the extent that the program which performs the translation is correct. Since the
translation is quite simple and the extraction is widely used in the Coq community, we can have good trust
that it will not introduce any bugs into our extracted code, but the possibility will be there until the extraction
process itself is verified.

In conclusion, at the end of this process what we obtain is an efficient OCaml program which, up to the
unverified extraction, is guaranteed not to misbehave.

1.2 About time and calendars

A time standard is a specification for measuring time: 1. the rate at which time passes; 2. points in time; 3. both.
In modern times, several time specifications have been officially recognized as standards, where formerly they
were matters of custom and practice. Standardized time measurements are made using a clock to count periods
of some period changes, which may be either the changes of a natural phenomenon or of an artificial machine.

2

Historically, time standards were often based on the Earth’s rotational period. From the late 18th century to
the 19th century it was assumed that the Earth’s daily rotational rate was constant. Astronomical observations
of several kinds, including eclipse records, studied in the 19th century, raised suspicions that the rate at which
Earth rotates is gradually slowing and also shows small-scale irregularities, and this was confirmed in the early
20th century. The invention in 1955 of the caesium atomic clock has led to the replacement of older and purely
astronomical time standards, for most practical purposes, by newer time standards based wholly or partly on
atomic time.

There are essentially two types of time standards.

• Solar: they are based on Earth’s rotation period, which defines a day. Seconds in these systems are defined
as the 1

86400 of a day. Since the rotation period turns out to slightly vary, seconds are not constant.

• Atomic: they are based on the SI definition of second, which is designed to be a constant amount of time.
The definition is “the duration of 9 192 631 770 periods of the radiation corresponding to the transition
between two hyperfine levels of the ground state of the caesium 133 atom”. In these systems, a day is
defined as a fixed number of SI seconds (usually 86400, but as we shall see this varies among systems).

Since the Earth’s rotation period varies, and in particular it is generally slowing, a time standard with days
defined as 86400 SI seconds will gradually differ from solar time. This may be irrelevant for some purposes,
but when civil time is somehow involved this can present a problem: without adjustments, noon in atomic time
could even happen during a night (in the sense of period with no solar light).

UTC, UT1 and TAI

Mean solar time was originally apparent solar time corrected by the equation of time. Mean solar time was
sometimes derived, especially at sea for navigational purposes, by observing apparent solar time and then adding
to it a calculated correction, the equation of time, which compensated for two known irregularities, caused by
the ellipticity of the Earth’s orbit and the obliquity of the Earth’s equator and polar axis to the ecliptic (which
is the plane of the Earth’s orbit around the sun).

UT1 is one of the systems based on this of mean solar time and Earth’s rotation. It is a modern continuation
of GMT. While conceptually it is mean solar time at 0◦ longitude, precise measurements of the Sun are difficult.
Hence, it is computed from observations of distant quasars using long baseline interferometry, laser ranging
of the Moon and artificial satellites, as well as the determination of GPS satellite orbits. UT1 is the same
everywhere on Earth, and is proportional to the rotation angle of the Earth with respect to distant quasars,
specifically, the International Celestial Reference Frame (ICRF), neglecting some small adjustments. The format
is generally the Gregorian calendar date, together with the time expressed in hours, minutes and seconds.

On the other hand, atomic times are measured using devices called atomic clocks, first built during the 1950s.
Thus, in practice all these time standards are measured as the number of seconds elapsed since a designated
time, called epoch. However, following civil customs and standards, these dates are most usually expressed in
Gregorian calendar format.

International Atomic Time (TAI, from the French name temps atomique international) is a high-precision
atomic coordinate time standard based on the notional passage of proper time on Earth’s geoid. It is also the
basis for Coordinated Universal Time (UTC), which is used for civil timekeeping all over the Earth’s surface.

TAI may be reported using traditional means of specifying days, carried over from non-uniform time standards
based on the rotation of the Earth. Specifically, both Julian Dates and the Gregorian calendar are used.

For the Gregorian calendar format, in TAI, seconds are SI seconds, minutes always have 60 seconds, hours
always have 60 minutes, and days always have 24 hours. TAI in this form was synchronised with UT1 at the
beginning of 1958, and the two have drifted apart ever since, due to the changing motion of the Earth. TAI as
of December 2018 reads approximately 37 seconds ahead of UT1.

Coordinated Universal Time (abbreviated to UTC) is the primary time standard by which the world regulates
clocks and time. It is within about 0.9 seconds of UT1, and is not adjusted for daylight saving time.

Since UTC uses SI seconds (and in particular it is based on TAI), some adjustments are needed to keep it
close to UT1. The solution adopted is as follows: days always have 24 hours, which always have 60 minutes,
but minutes have occasionally 59 or 61 seconds. The possibility of 59 seconds is theoretical, in practice this has
never happened: since SI seconds are slightly shorter than solar seconds in average, it is extremely unlikely that
a minute of 59 seconds will occur. When a minute of 61 seconds occurs, the extra second is called leap second.

3

Hence, UTC is based on TAI with leap seconds added at irregular intervals to compensate for the slowing of
the Earth’s rotation. Leap seconds are inserted as necessary to keep UTC within 0.9 seconds of UT1, and are
thus unpredictable in the long-term.

Leap seconds When it occurs, a positive leap second is inserted between second 23:59:59 of a chosen
UTC calendar date and second 00:00:00 of the following date. The definition of UTC states that the last
day of December and June are preferred, with the last day of March or September as second preference,
and the last day of any other month as third preference. All leap seconds (as of 2017) have been scheduled
for either June 30 or December 31. The extra second is displayed on UTC clocks as 23:59:60. On clocks that
display local time tied to UTC, the leap second may be inserted at the end of some other hour (or half-hour
or quarter-hour), depending on the local time zone. A negative leap second would suppress second 23:59:59
of the last day of a chosen month, so that second 23:59:58 of that date would be followed immediately
by second 00:00:00 of the following date. Since the introduction of leap seconds, the mean solar day has
outpaced UTC only for very brief periods, and has not triggered a negative leap second.

Because the Earth’s rotation speed varies in response to climatic and geological events, UTC leap
seconds are irregularly spaced and unpredictable. Insertion of each UTC leap second is usually decided
about six months in advance by the International Earth Rotation and Reference Systems Service (IERS),
when needed to ensure that the difference between the UTC and UT1 readings will never exceed 0.9 seconds.
See Table 7 in Appendix A

The modern version of UTC, implemented in 1972, established leap seconds and synchronised UTC with
TAI, with an initial difference of 10 seconds, which was the approximate difference at the time between TAI and
UT1. More precisely, UTC was set so that 1 January 1972 00:00:00 UTC was exactly 1 January 1972 00:00:10
TAI. As of December 2018, there have been 27 leap seconds added to UTC, so that currently TAI is exactly 37
seconds ahead of UTC.

The second is the basic unit in FVTM and since it contains a proper implementation of UTC, a second in
this library will be understood as atomic second.

Calendars in FVTM

A calendar is a system of organizing days for social, religious, commercial or administrative purposes. This is
done by giving names to periods of time, typically days, weeks, months and years. A date is the designation of
a single, specific day within such a system.

There is a de facto standard civil calendar, known as the Gregorian calendar. It is a solar calendar, which
means that it assigns a date to each solar day.

The Julian calendar proposed by Julius Caesar in 46 BC, took effect on 1 January 45 BC. It was the
predominant calendar in the Roman world, most of Europe, and in European settlements in the Americas and
elsewhere.

The Julian calendar has two types of year: “normal” years of 365 days and ”leap” years of 366 days. There
is a simple cycle of three “normal” years followed by a leap year and this pattern repeats forever without
exception. The Julian year is, therefore, on average 365.25 days long. Consequently, the Julian year drifts over
time with respect to the tropical year.

The Gregorian calendar has the same months and month lengths as the Julian calendar, but, in the Gregorian
calendar, year numbers divisible by 100 are not leap years, except that those divisible by 400 remain leap years.
To state it clearer, the rule says:

Every year divisible by 400 is a leap year.
Every year divisible by 4 but not by 100 is also a leap year.

No other year is a leap year.

The Gregorian calendar is the most widely used as a civil calendar. Furthermore, the Gregorian calendar
can be extended backwards to dates preceding its official introduction in 1582. This is known as the proleptic
Gregorian calendar, which is explicitly recommended for all dates before 1582 by ISO 8601:2004.

The calendar format of FVTM is the Gregorian UTC Calendar. By that, we mean exactly UTC time since
its modern definition in 1970 with the format of the Gregorian calendar: days fit into years using the commonly
known 12 months of 28 to 31 days each, for a total of 365 or 366 days in a year, and leap (366-day) years add

4

a day after February 28 called February 29. Moreover, the Gregorian UTC Calendar takes into account leap
seconds.

The OCaml part of FVTM takes 1970-1-1 00:00:00 as epoch, and valid times range since 1970-1-1 00:00:00
until 9999-12-31 23:59:59. Internally, the Coq implementation of the calendar includes times since 1-1-1 00:00:00
until 9999-12-31 23:59:59, since that definition allows us to give a clean formal specification of the calendar and
an arithmetical expression for determining leap years. This should be seen as a mathematical extension of
the Gregorian UTC calendar which has no physical support (since atomic clocks did not exist). We of course
assume there are no leap seconds prior to 1970. We call the theoretical calendar resulting from those assumptions
proleptic Gregorian UTC calendar.

Observe that in this calendar, the duration of the second is constant, but the other components are not.
The duration of the minutes measured in seconds is not constant because of the possibility of leap seconds, and
so, this irregularity propagates to hours and days. The duration of the months is not constant, adding to the
leap seconds problem the fact of the leap day in February in leap years and the 31-30 alternation. And then of
course, also the duration of the years is not constant due to leap seconds and the leap day in February.

Because of all this, the duration of the interval between two points in the Gregorian UTC calendar made
in seconds is mathematically consistent and clear, but the duration can not be grouped uniformly in higher
regular units corresponding with calendar positions unless we introduce hard extra definitions. Also nowadays
some functions about adding or subtracting a duration to a date which has not specified these complications
are being used and the result gives paradoxes. This kind of paradoxes are due to the fact that these methods
are not adding constant intervals, but just changing the date components.

FVTM also provides a solution to this question by defining the Formal Calendar. It is aimed to group
the duration in higher units than seconds, keeping the meaning of the intuitive minute, hour, day, month and
year defined in Gregorian Calendar. Note that actually is not a calendar in the proper sense of representing a
point in the time line, but we keep that name because of the names of the units. The formal second is equivalent
to the atomic second and thus constant. With the formal second, the remaining units are easily definable:

• the formal minute duration will be 60 seconds;

• the formal hour duration will be 60 formal minutes;

• the formal day duration will be 24 formal hours;

• the formal month duration will be 30 formal days;

• the formal year duration will be 365 formal days, that is 12 formal month duration plus 5 formal days
duration, which is the same as 31.536.000 seconds.

The way of counting time

In this section e discuss the duration of an interval as cardinal of a set instead of as the arithmetical difference
between the end points of the interval.

Measuring time is counting the number of movements made by the stick of the clock from one to another
position. More generally, for a clock or any machine with periodic repetitive movements, measuring time is
counting the number of (periodic repetitive) movements made by one central element (electron inside of an
atom, pendulum, clock stick...). We name the positions between movements by 1, 2, 3, . . . , n + 1,

In the case of a round clock, with 60 small different marks and 60 spaces among them, the positions are fixed
and the fact of being round makes the first and the last position the same 1, 2, 3, . . . , 60 = 1, 2, A cleaner
mathematical solution to this is to use the number 0 for the first position, where no movement has been made,
thus identifying the name of a position with the number of movements needed to reach it from the origin. By
the fact of being round, the position 60 is the same that the 0 starting again the cycle.

The definition of interval between positions n1 and n2 is the set of all the consecutive numbers of positions
between n1 and n2 including both, and is represented by [n1, n2] = {n1, n1 + 1, . . . , n2}.

For defining the duration of the interval [n1, n2] we can use the “common sense” or “comon idea”: the
number of movements the central elements did to reach the position n2 starting from position n1. Hence, since
the number of movements until n2 is the number of movements until n1 plus the movements from n1 to n2, the
number of movements from n1 to n2 can be computed as n2 − n1. Note that in any partition of this kind we

5

also have one space less than sticks, and this coincides with the cardinal of the set minus one of the elements.
Hence:

Duration [n1, n2] = n2 − n1 = Cardinal [n1, n2) .

For example, the duration of the calendar-style interval [1970/1/1/00:00:00, 1970/1/1/00:01:00] would be:

Duration [0, 60] = 60− 0 = Cardinal [0, 60) = 60.

And similarly, the duration of [1970/1/1/00:01:00, 1970/1/1/00:02:00] would be:

Duration [60, 120] = 120− 60 = Cardinal [60, 120) = 60.

In FVTM differences between dates are proven equal to the cardinal definition. For a more detailed
examination see Table 9 in Appendix 7.

1.3 Local time and time zones

Local-UTC conversion

FVTM is conceived to work in UTC. However this library also provides additional OCaml (non-verified)
functions to manage different local time zones. With these extra functionalities we can translate local times to
UTC and vice versa. Once local times are converted into UTC times, we can use them as arguments to any of
the remaining functions.

UTC
FVTM

functions
UTC

Local time Local time

Translation

Translation

Figure 1: Behavior of the FVTM

Translating local times into UTC is a good practice in order to avoid inaccuracies. Here we have a real
example of the industry to illustrate it. In the road transport industry the tacograph is used to ensure trucks
follow the legislation. One of the main concepts in this law is the Continuous Driving Time. We can define the
driving time of an interval as the duration of the driving activity until the next non-driving activity. Consider
the ordered list of times and activities in Figure 2. According to the definition of driving time, the interval is
[00:55, 01:05] and then the duration of the interval yields 10 minutes of driving.

If we translate the list of activities to local time in Portugal, having in mind that on 2018/10/28/2:0:0 there
was a DST change from UTC+1 to UTC+0 we have:

The second row would be 02:05 in UTC+1, but just at 02:00 we change from UTC+1 to UTC+0, the situation
is similar with the fourth row. If we calculate again the driving time, the interval is now [01:55, 22:00] and then
the duration of the interval yields 20 hours and 5 minutes of driving.

There is not a perfect and definitive solution for this problem, since the time change occurs at one point
or another. This same driving time duration change can also happen when a driver moves from a country or
region to another in a different time zone.

6

activity time kind

Break/Rest 2018/10/27/23:30:00 UTC
Driving 2018/10/28/00:55:00 UTC
Break/Rest 2018/10/28/01:05:00 UTC
Work 2018/10/28/22:00:00 UTC

Figure 2: Tachograph example of times and activities

activity time kind

Break/Rest 2018/10/27/00:30:00 Portugal Local time: UTC+1
Break/Rest 2018/10/28/01:05:00 Portugal Local time: UTC+0
Driving 2018/10/28/01:55:00 Portugal Local time: UTC+1
Work 2018/10/28/22:00:00 Portugal Local time: UTC+0

Hence FVTM will make all the computations with the uniform UTC time and later if this is the user
preference the results can be translated to a local time.

In this section we introduce a new setting to consider local times.
While UTC time can be considered like a uniform time for the whole planet, we need to include the local

times for different regions of the world. We have the concept of local time of a region, which is the translation
of UTC corresponding to the longitude of the region, the so-called offset and also the possibility of DST, which
is Daylight Saving Time, the hour added in some places facing the summer to take more profit of the solar light.

We need to have in mind that in several places the offset does not correspond exactly to the longitude of
the region. For instance we have the case of Spain which is physically in the Greenwich Meridian and thus it
can have a +0 offset like Portugal but instead of it we have an offset of +1.

So we are going to present functions to go from UTC to local time and the converse, from local time to
UTC:

The first one which take as input a time and a code of the region of the world, outputs data of a new datatype
representing the local time, this depending on the region and the date will be UTC+n, where n is the
offset or UTC+n+1 if the region consider DST and the date is in that period.

The function from local time to UTC, conversely, takes as input datatype for local time and the region code
and will outputs data of type time representing the UTC time. Again this depends on the region and the
date.

Also we can consider a function that given the code of a region and an interval of years outputs the time
structure of the region in that period, that is, the offset, whether the region consider or not DST and in an
affirmative answer the dates for that changes in the given period.

The Formal Vindications Time Manager includes an international homologated database called tz database
(tz stands for time zones)1. This database contains the offset of the regions of the whole planet and also
the date and time of the changes for the regions which consider daylight saving time (DST) changes. It is
updated whenever is necessary (and also we will update the FVTM). This data can also be confirmed in the
site timeanddate.com which has a more comfortable way of visualizing the information.

The last decision regarding the DST changes lies in each country –or even in the international institutions
to which the country belongs–. Sometimes the fact whether a region consider DST or not changes by decree in
little time, as was the case of Brazil last year, which makes some problems to the industry. We hope that the
inclusion of the tz database will be helpful for that kind of problems.

Together with the rest of the functionalities, we give an explanation of the functions that FVTM provides
to deal with local times, and at the end of the document we attach the whole list of regions considered. The
proper name of the regions for the purpose of local time is time zone. As codes for the regions, we will use the
international names of the time zones as they appear in the tz database. Hence the list is helpful to know the
codes one needs to use the functions.

1See: https://es.wikipedia.org/wiki/TZ_Database and also https://en.wikipedia.org/wiki/List_of_tz_database_time_

zones

7

timeanddate.com
https://es.wikipedia.org/wiki/TZ_Database
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

tz Database

The Time Zone Database (often called tz or zoneinfo) contains a collaborative compilation of code and data that
presents the history of local time for many representative locations around the globe. The database records
historical time zones and all civil changes since 1970. It includes transitions such as daylight saving time,
and also records leap seconds. tz is used by several implementations, including the GNU C Library (used in
GNU/Linux), Android, Chromium OS, MySQL, webOS, AIX, BlackBerry 10, iOS, macOS, et al.

The tz database is in the public domain. Time zones and daylight-saving rules are controlled by individual
governments. Therefore, sometimes changes are introduced with little notice. tz is updated periodically to
capture these changes made by political bodies. Proposed changes are sent to the tz mailing list. These
changes are usually propagated to clients via OS updates.

In tz, time zones are named in the form Area/Location:

• Area: is the (English) name of a continent, an ocean, or “Etc”. The continents and oceans currently
used are Africa, America, Antarctica, Arctic, Asia, Atlantic, Australia, Europe, Indian, and Pacific. The
special area of “Etc” is used for some administrative zones.

• Location: is the name of a specific location within the area (usually the most populous city although
other cities may be selected if they are more widely known, due to disambiguation or if the name has
more than 14 characters).

Observe that country names are not used in this scheme since they are affected by frequent political changes.
Some examples of time zone names are: America/New York, Europe/Oslo, Asia/Beirut, etc. In some cases,

three-level names are used where Location is itself a compound name. For example America/Argentina/Cordoba
or America/Indiana/Indianapolis.

8

2 Formal Vindications Time Manager Behavior

In this section we shall explain the behavior of FVTM. The FVTM provides the following files:

• FVTMnc.ml;

• FVTMnc.mli;

• FVTM.ml;

• timezones.ml;

• Coq Time Library.

FVTMnc.ml

This file contains a version of FVTM which is directly extracted from Coq so that users can operate with it.
In this version, the code shall not perform input validation.irectly extracted code does not perform proper
testing of any input supplied by the user. This is because Coq, as a programming language, is completely pure,
which means that the behavior of a program cannot change at execution time –in particular, it does not accept
input at execution time. The only possible input comes from inside of Coq and it needs to be proven correct.
We shall refer to this version of the FVTM as Pure.

FVTMnc.mli

A *.mli file is an OCaml Interface Source. This file is the exported signature of the module. The compiler
enforces it in order to compile the *.ml code.

FVTM.ml

This OCaml file contains code which is almost directly extracted from Coq. The slight modification of the
original extracted code is done in order to perform input validation. While directly extracted code does
not perform proper testing of any input, when extracted to OCaml, we expect the program to accept input
at execution time, and since input is inherently prompt to mistakes and errors, it needs to be validated, i.e.,
checked correct. The slight modification of the extracted code only does that: it takes an input, uses a function
directly extracted from Coq to check the correctness of the input, and only after that executes the function
over the input. Since this version of the FVTM requires an extra OCaml layer, we shall refer to it as Impure.

timezones.ml

The file timezones.ml is OCaml auxiliary code to communicate the tz database with the FVTM. The
programmers using the manager do not need to use this file directly. This file is directly implemented in
OCaml and thus, part of the Impure version.

Pure version files Impure version files

FVTMnc.ml FVTM.ml

FVTMnc.mli timezones.ml

Coq Time Library

Contains the whole project written in Coq together with its own documentation.

9

FVTM

timezones

FVTMnc

Coq Time Library

Figure 3: Flowchart of FVTM file dependencies.

2.1 The calendar in The Coq Time Library

In this section, we present technical details about the formal specification and implementation of the calendar
in Coq that can be useful to understand the warnings that we give below for the use of the OCaml code.
However, readers that are only interested in using the library and not in the details of how it works can skip
this section.

The core functionalities of the FVTM are the conversions between times and timestamps, in both directions.
The proof of correctness for these two conversions is where the mathematical strength lies – the rest of the proofs
depend on those two. For that reason, a mathematically clean formal definition of the Gregorian calendar was
needed, including the determination of leap years, and that is why we chose to represent the proleptic Gregorian
calendar since 1-1-1 00:00:00 until 9999-12-31 00:00:00.

Since Coq is a mathematical-oriented language, we have types that are not usual in regular programming
languages, for instance nat , which is the type of the natural numbers starting at 0, N = {0, 1, 2, . . .}. In Coq,
the datatype time is roughly defined as six nat s (year, month, day, hour, minute, and second) and a proof
that they satisfy the restrictions (i.e., that the date and time make sense and inside of the range from 1-1-1
00:00:00 to 9999-12-31 23:59:59). Then, we have the two core functions:

• timestamp: receives a time and returns a nat which represents the timestamp of the time with epoch
1-1-1 00:00:00. That means that timestamp 0 represents time 1-1-1 00:00:00.

• from timestamp: performs the opposite conversion, receives a nat and returns a time , assuming again
epoch 1-1-1 00:00:00, i.e., timestamp 0 represents time 1-1-1 00:00:00.

To prove correctness, we prove a theorem which says that timestamp behaves exactly as a formal, mathematical
description of what timestamp is. Then, we prove that from timestamp is the inverse function.

Then, since we are interested in extracting these functions with epoch 1970-1-1 00:00:00 because this is the
standard epoch for UTC measured with atomic clocks, the Coq development continues as follows. It defines new
versions, called utc timestamp and from utc timestamp, of the above functions, which have the 1970 epoch
and are defined using the above ones. In particular, utc timestamp over a time t is defined as follows:

utc timestamp(t) = timestamp(t)− timestamp(1970-1-1 00:00:00)

10

After that we prove them correct using the theorems for the above versions. This is important because, as
we shall see in the next section, the Coq type nat gets extracted to the OCaml type int , with relevant
consequences.

Hence, it should be clear now that The Coq Time Library understands dates starting at year 1, but the part
that gets extracted to OCaml only treats with dates starting at year 1970.

2.2 General remarks on the extraction

Coq is a language capable of expressing both algorithms and mathematics, but it is too inefficient to run for
industrial purposes. In order to have code efficient enough to run, Coq code is automatically extracted to
OCaml code, and in this section we shall explain all the problems derived from the extraction process itself.

First of all, the extraction process is not verified. A software translates Coq code to OCaml code
and this software could contain bugs. Therefore, the OCaml code is formally verified except for the extraction.
However, there are good reasons to trust the extraction process if it is performed in a smart way2. Moreover,
the extraction tool is widely used in the Coq community and no critical bugs are found. As a team, we look
forward to the day verified extraction is reached.

Now, there is a particularity of Coq that has crucial consequences during extraction, so let us briefly visit
it. Since Coq is designed as a mathematical environment, the natural numbers N = {0, 1, 2, . . .} are represented
by the type nat , which is unary. This means that nat is defined as a type that contains the zero element 0,
and a function S called “successor” which generates more elements. In particular, number 1 is expressed as S 0,
number 5 is expressed as S (S (S (S (S 0)))), number 5000 does not fit in a piece of paper, and number five
million does not fit in the RAM of a modern computer. This definition makes sense in Coq because it is not
meant to compute, it is meant to prove mathematical results. However, in OCaml, as in most programming
languages, this type does not exist3, and instead there is a type int that efficiently represents the integers
Z = {. . . ,−2,−1, 0, 1, 2, . . .} using the typical machine binary representation, and the extraction process takes
Coq’s nat to OCaml’s int .

Thus, functions that in Coq receive as input a natural number, when extracted to OCaml receive an integer,
opening the possibility for the user to introduce negative integers. This has some important consequences that
we explain below as a warning. In the case of the impure version (FVTM.ml), this is not a problem, since input
validation detects that the received integer is negative and issues an error message. In the pure version, since
there is no input validation as the code is directly extracted from Coq, when an invalid input is given there are
no error messages and the result of the functions can be misleading.

In short, we call this particularity of extraction “nat->int”, and we give warnings in the tables below when
functions are affected by this issue.

In a similar way, other datatypes that have restrictions in Coq (like time), when extracted purely to
OCaml can accept invalid data, leading to unpredictable and confusing results.

The functions of FVTM are supposed to work over valid data, i.e, data satisfying the restrictions expressed
in sections 2.3 and 2.4. Using the functions of FVTM over invalid input:

• In the pure version, may give misleading results, or results that do not satisfy the datatype restrictions.

• In the impure version, triggers an exception and gives an error message.

The tables in sections 2.3 and 2.4 contain enough warnings to safely use the FVTM functions, but here we
give an exhaustive list of the misleading consequences that using invalid inputs may have.

1. The first consequence is particularly relevant in cases like function 12 from utc timestamp. While the
expected input should be greater or equal than 0, this input validation can not be performed in the pure
version. Thus, a negative integer can be processed by the function e.g.

2In particular, if the part of the Coq code which is meant for extraction, i.e., the implementation Π, is written in a reduced
fragment of the language of Coq, the translation to OCaml is just a syntactic transformation simple enough to have reasonable
trust in the extraction process.

3We should observe that in FVTMnc.ml references to type nat might be found when calling some functions or constructors.

However, this is a rename of the type int performed by OCaml (type nat = int). In other words, the nat references in OCaml

are simply int .

11

FVTMnc.ml

from_utc_timestamp (-10);;

- : time =

{rawDate_of_rawTime = {year = 1969; month = 12; day = 31}; hour = 23;

minute = 59; second = 50}

This regression with respect to the epoch makes consistent the use of negative integers with the formal
specification in Coq (recall that dates in the Coq Time Library range from year 1 up to year 9999), but
it is not valid in OCaml, since our valid times in OCaml start in 1970.

Analogously, we could use to Formaltime with a negative argument. The type formalTime only makes
sense with natural numbers, but since inputs can not be filtered by the pure version, the function will
reproduce a negative formalTime :

FVTMnc.ml

to_FormalTime (-120);;

- : formalTime = {fY = 0; fM = 0; fD = 0; fh = 0; fm = -2; fs = 0}

In the pure files, the user is expected to make a correct use of this functions checking the input manually.
An inconsistent use of the functions will lead to misleading results. Therefore, in functions:

• 03 - max second;

• 12 - from utc timestamp;

• 28 - days of month;

• 29 - is leap year;

• 32 - to FormalTime;

for a valid performance, the type int should be interpreted as a non-negative integer.

2. In the formal specification of the Coq Time Library, the formalTime type is defined as a structure of
elements of type nat (see Table 5) and hence, formalTime is always positive. However, in pure files
due to nat->int, negative values are available to use within the formalTime structure. As before, the
correctness of these functions depends on the consistent use of them, and so, in functions:

• 13 - addFormal;

• 30 - subtractFormal;

• 31 - from FormalTime;

formalTime should be use as a structure with non-negative integers. Actually, the type formalTime

should always be used with non-negative integers, as expressed in the restrictions of the datatypes in
Section 2.3.

3. A similar kind of restriction holds for the types time and date . In these cases the user is expected not
only to use the previous nat restriction, but also the restrictions imposed by the Gregorian calendar,
e.g. mkDate 2020 2 30 is not a valid date since February 30th does not exist in the Gregorian calendar,
where February contains only 28 days, or 29 days in a leap year.

4. During the extraction, some types and functions are renamed in order to make them syntactically coherent,
to avoid clashing with some other OCaml objects with the same name or to respect OCaml syntax.
However, internally the original Coq names are sometimes preserved by OCaml. References about Coq
datatypes and function can be found in Section 3.

12

Future work Newer versions of Coq introduce a type for the usual machine integers with binary representation,
the same integers OCaml uses. Our future work regards the possibility of providing mathematical proof of the
equivalence of a bounded fragment of nat and the non-negative fragment of the integers, in such a way that
we would solve two problems at once: first, we would avoid extracting from the unbounded type nat to the
bounded type int 4; and second, we would be able to control inside of Coq the behavior of the functions when
negative inputs are given.

2.3 Datatypes

The following table contains the types provided by FVTM. Since the pure version does not validate inputs,
the item Error messages only makes sense in the context of FVTM.ml. The following table contains the types
provided by FVTM. Since the pure version does not validate inputs, the item Error messages only makes sense
in the context of FVTM.ml. The Restrictions are automatically checked in the impure version FVTM.ml, but in
the pure FVTMnc.ml the user should check them. Also recall that the nat->int remark and the Extraction
remark apply only to the pure version FVTMnc.ml.

Name Description Constructors

timestamp Kind of data: The number of seconds between a
particular date and 1970-1-1 00:00:00 in UTC.

mkTimestamp n

Explanation: A type for natural numbers interpreted as
seconds since 1970-1-1 00:00:00 including leap seconds.
For example, the timestamp of 2020-1-1 00:00:00 is
1577836827. Recall that UNIX timestamp does not
represent UTC seconds after 1970-1-1 00:00:00.
Restrictions: naturals from 0 to 253402300826. The
maximum value will change as leap seconds are
introduced.
Error messages: 03.
Version: Impure.

date Kind of data: Format for points in the Gregorian UTC
calendar time line with precision to days.

mkDate Y M D

Explanation: A structure of natural numbers Y M D

representing a year, a month and a day respectively.
Restrictions: 1970 ≤ Y ≤ 9999, 1 ≤ M ≤ 12 and 1 ≤ D ≤
days of month Y M, where days of month is a function
which assigns to a year and a month the number of days
that the month has in that year.

Extraction remark: In the pure
version the constructor does not
check that the Restrictions hold.

Error messages: 02.
Version: Pure/Impure.

time Kind of data: Format for points in the Gregorian UTC
calendar time line with precision to seconds.

mkTime Y M D h m s

Explanation: A structure of natural numbers Y M D h

m s, where Y represents a year, M a month, D a day h an
hour, m a minute and s a second.

Restrictions: Y M D need to form a date , i.e. satisfy
the Restrictions for date .
0 ≤ h ≤ 23 0 ≤ m ≤ 59 0 ≤ s ≤ max second YMDhm,
where max second is a function (see 3) that gives the last
second of that minute on that hour and date; meaning
60 if it is a leap second or 59 otherwise.

Extraction remark: In the pure
version the constructor does not
check that the Restrictions hold.

Error messages: 01.
Version: Pure/Impure.

4In our development, the maximum valid timestamp is seven orders of magnitude below the maximum integer representable in
OCaml, so for the FVTM overflowing the machine integer is not an issue; but still, this is an important problem in many other
industrial developments.

13

clock Kind of data: Type for expressing times without dates. Only used internally and as output
Explanation:A structure of natural numbers ch cm cs,
for hours, minutes and seconds respectively.
Restrictions: -.
Error messages: -.
Version: Pure/Impure.

formalTime Kind of data: Type for the duration of time interval
between two points in Gregorian UTC calendar.

mkFormalTime fY fM fD fh fm fs

Explanation:A structure of natural numbers fY fM fD

fh fm fs, where fY represents an amount of formal
years, fM represents an amount of formal months, fD an
amount of formal days, fh an amount of formal hours,
fm represents an amount of formal minutes and fs an
amount of formal seconds.
Restrictions: 0 ≤ fs < 60, 0 ≤ fm < 60, 0 ≤ fh < 24,
0 ≤ fD < 30 and 0 ≤ fM < 12 or fM = 12 and 0 ≤ fD <
5.

Extraction remark: In the pure
version the constructor does not
check that the Restrictions hold.

Error messages: 10.
Version: Pure/Impure.

localTime Kind of data: Format for points in the Gregorian
calendar of any timezone with precision to seconds.

mkLocalTime Y M D h m s

Explanation: A string of natural numbers Y M D h m

s, where Y represents a year, M a month, D a day h an
hour, m a minute and s a second.
Restrictions: 1970 ≤ Y ≤ 9999, 1 ≤ M ≤ 12 and 1 ≤ D ≤
days of month Y M, where days of month is a function
which assigns to a year and a month the number of days
that the month has in that year.
0 ≤ h ≤ 23, 0 ≤ m ≤ 59, 0 ≤ s ≤ 60, since in principle
a leap second could occur at any minute depending on
the timezone.
Error messages: 11.
Version: Impure.

Apart from that, FVTM makes use of the following OCaml types:

Name Description

int Kind of data: OCaml basic built-in type.
Explanation: The type for integer numbers.
Restrictions:31-bit signed int (roughly +/- 1 billion) on 32-bit
processors, or 63-bit signed int on 64-bit processors.
Error messages: Provided by OCaml.
Version: Pure/Impure.

bool Kind of data: OCaml basic built-in type.
Explanation: The type for boolean values: true and false.
Restrictions: Type restricted to elements true and false.
Error messages: Provided by OCaml.
Version: Pure/Impure.

14

string Kind of data: OCaml basic built-in type.

Explanation: A string is an immutable data structure that contains
a fixed-length sequence of (single-byte) characters.
Restrictions: The maximum string length is 16777211 on 32-bit
processors and 144115188075855863 on 64-bit processors.
Error messages: Provided by OCaml.
Version: Impure.

’a list Kind of data: OCaml basic built-in type.
Explanation: The type of lists. It can be instantiated with elements
of any type. The symbols ’a mean that any type can take that
place. We will use it as lists of dates date list and lists of times
time list .

Restrictions: -.
Error messages: Provided by OCaml.
Version: Pure/Impure.

2.4 Functions

The following table contains the functions provided by FVTM. Since the pure version does not validate inputs,
as in the case of the datatypes table, the item Error messages only makes sense in the context of FVTM.ml.
Furthermore, the type of functions 11 and 12 change according to its pure/impure version. With respect to the
examples, the Usage Example references are obtained from the FVTM.ml file. Recall that the nat->int remark
only applies to the pure version.

All the functions in the pure version are in the file FVTMnc.ml, and all the functions in the impure version
are in the file FVTM.ml.

Time zones FVTM can be used with different UTC local time zones (see functions 33 and 34). Recall that
these extra functions are directly implemented in OCaml and make use of the tz database. The string input
accepted by these functions correspond to the time zones names in the tz databse, that is, the names that can
be found in column TIME ZONE of the tables in Appendix B.

Name Description of the function:

01 date of time Input: time

Output: date

Explanation: Projection of the date part of a time .

Use: date of time time = date

Usage Example:
date of time (mkTime 2020 2 22 10 20 30);;

- : date = {FVTLnc.year = 2020; month = 2; day = 22}
Error messages: 01; 02.
Version: Pure/Impure.

02 time of time Input: time

Output: clock

Explanation: Takes as input a time and returns the clock

corresponding to that time .

Use: time of time time = clock

Usage Example:
time of time (mkTime 2020 2 22 10 20 30);;

- : clock = {FVTLnc.chour = 10; cminute = 20; csecond =

40}
Error messages: 01; 02.
Version: Pure/Impure.

15

03 max second Input: date int int

Output: int

nat->int remark: Input elements of type int must be non-negative
(see Section 2.2).

Explanation: Takes as input a date together with two elements of type
int representing the hour and minute respectively.

It returns the maximum value of the second for that date at that hour
and minute. Thus, the possible outcomes will be 59 for a regular minute,
60 for a positive leap second and 58 for a negative leap second.

Use: max second time int int = int
Usage Example:
max second (mkDate 2020 2 22) 10 20;;

- : int = 59

Error messages: 02; 04.
Version: Pure/Impure.

04 second Input: time

Output: int

Explanation: Projection of the second component of a time .

Use: second time = int

Usage Example:
second (mkTime 2020 2 22 10 20 30);;

- : int = 30

Error messages: 01; 02.
Version: Pure/Impure.

05 minute Input: time

Output: int

Explanation: Projection of the minute component of a time .

Use: minute time = int

Usage Example:
minute (mkTime 2020 2 22 10 20 30);;

- : int = 20

Error messages: 01; 02.
Version: Pure/Impure.

06 hour Input: time

Output: int

Explanation: Projection of the hour component of a time .

Use: hour time = int

Usage Example:
hour (mkTime 2020 2 22 10 20 30);;

- : int = 10

Error messages: 01; 02.
Version: Pure/Impure.

07 day Input: date

Output: int

Explanation: Projection of the day component of a date .

Use: day date = int

Usage Example:
day (mkDate 2020 2 22);;

- : int = 22

Error messages: 02.
Version: Pure/Impure.

16

08 day of week Input: date

Output: int

Explanation: Returns the day of the week of a date using numerical
encoding 1 = Mon, 2 = Tue, etc.

Use: day of week date = int

Usage Example:
day of week (mkDate 2020 2 22);;

- : int = 6

Error messages: 02.
Version: Pure/Impure.

09 month Input: date

Output: int

Explanation: Projection of the month component of a date .

Use: month date = int

Usage Example:
month (mkDate 2020 2 22);;

- : int = 2

Error messages: 02.
Version: Pure/Impure.

10 year Input: date

Output: int

Explanation: Projection of the year component of a date .

Use: year date = int

Usage Example:
year (mkDate 2020 2 22);;

- : int = 2020

Error messages: 02.
Version: Pure/Impure.

11 utc timestamp Input: time

Output: int (pure)

timestamp (impure)

Explanation: Conversion from time to its timestamp both types in

UTC with leap seconds.

Use: utc timestamp time = timestamp

Usage Example:
utc timestamp (mkTime 2020 2 22 10 20 30);;

- : timestamp = RawTimestamp 1582366857

Error messages: 01; 02.
Version: Pure/Impure.

12 from utc timestamp Input: int (pure)

timestamp (impure)

Output: time

nat->int remark: Input element of type int must be non-negative
and at most 253402300826 (see Section 2.2). Negative inputs can
give times between year 1 and 1969 which are implemented in Coq, or
even negative years, which are not there by design. Inputs bigger than
253402300826 may give a time not satisfying the restrictions of the
type.

Explanation: Conversion from timestamp to its time both types in

UTC with leap seconds.

Use: from utc timestamp timestamp = time

17

Usage Example:
from utc timestamp (Pr TS 1582366857);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 10; minute = 20; second

= 30}
Error messages: 03; 07; 08.
Version: Pure/Impure.

13 addFormal Input: time formalTime

Output: time

Explanation: Adding to a time a duration interval of type formalTime

we obtain a new position in the Gregorian calendar with an element of
type time .
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: addFormal time formalTime = time

Usage Example:
addFormal (mkTime 2020 2 22 10 20 30) (mkFormalTime 1 1 1

1 1 1);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2021; month = 3; day = 24}; hour = 11; minute = 21; second

= 31}
Error messages: 01; 02; 04; 07; 08; 10.
Version: Pure/Impure.

14 shiftUTCSeconds Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: From an element of type time , take the component
second and shift it (forward or backward) a number of times determined
by the argument of type int .
It is done accordingly to the UTC calendar and taking into account leap
seconds. If the resultant time is not a valid time it takes the last
existing time before of that one.
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: shiftUTCSeconds time int = time

Usage Example:
shiftUTCSeconds (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 10; minute = 22; second

= 35}

shiftUTCSeconds (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 10; minute = 18; second

= 25}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

18

15 addFormalSeconds Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: Adding an amount of formal seconds to a time .
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: addFormalSeconds time int = time

Usage Example:
addFormalSeconds (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 10; minute = 22; second

= 35}

addFormalSeconds (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 10; minute = 18; second

= 25}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

16 shiftUTCMinutes Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: From an element of type time , take the component
minute and shift it (forward or backward) a number of times determined
by the argument of type int .
It is done accordingly to the UTC calendar and taking into account leap
seconds. If the resultant time is not a valid time it takes the last
existing time before of that one.
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: shiftUTCMinutes time int = time

Usage Example:
shiftUTCMinutes (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 12; minute = 25; second

= 30}

shiftUTCMinutes (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 8; minute = 15; second =

30}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

19

17 addFormalMinutes Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: Adding an amount of formal minutes to a time .
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: addFormalMinutes time int = time

Usage Example:
addFormalMinutes (mkTime 2020 2 22 10 20 30) 125

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 12; minute = 25; second

= 30}

addFormalMinutes (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 8; minute = 15; second =

30}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

18 shiftUTCHours Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: From an element of type time , take the component hour
and shift it (forward or backward) a number of times determined by the
argument of type int .
It is done accordingly to the UTC calendar and taking into account leap
seconds. If the resultant time is not a valid time it takes the last
existing time before of that one.
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: shiftUTCHours time int = time

Usage Example:
shiftUTCHours (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 27}; hour = 15; minute = 20; second

= 30}

shiftUTCHours (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 17}; hour = 5; minute = 20; second =

30}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

20

19 addFormalHours Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: Adding an amount of formal hours to a time .
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: addFormalHours time int = time

Usage Example:
addFormalHours (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 27}; hour = 15; minute = 20; second

= 30}

addFormalHours (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 17}; hour = 5; minute = 20; second =

30}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

20 shiftUTCDays Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: From an element of type time , take the component day

and shift it (forward or backward) a number of times determined by the
argument of type int .
It is done accordingly to the UTC calendar and taking into account leap
seconds. If the resultant time is not a valid time it takes the last
existing time before of that one.
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: shiftUTCDays time int = time

Usage Example:
shiftUTCDays (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 6; day = 26}; hour = 10; minute = 20; second

= 30}

shiftUTCDays (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2019; month = 10; day = 20}; hour = 10; minute = 20; second

= 30}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

21

21 addFormalDays Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: Adding an amount of formal days to a time .
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: addFormalDays time int = time

Usage Example:
addFormalDays (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 6; day = 26}; hour = 10; minute = 20; second

= 30}

addFormalDays (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2019; month = 10; day = 20}; hour = 10; minute = 20; second

= 30}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

22 shiftUTCMonths Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: From an element of type time , take the component month
and shift it (forward or backward) a number of times determined by the
argument of type int .
It is done accordingly to the UTC calendar and taking into account leap
seconds. If the resultant time is not a valid time it takes the last
existing time before of that one.
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: shiftUTCMonths time int = time

Usage Example:
shiftUTCMonths (mkTime 2020 2 22 10 20 30) 125;;

- : time ={FVTLnc.rawDate of rawTime = {FVTLnc.year = 2030;

month = 8; day = 22}; hour = 10; minute = 20; second = 30}

shiftUTCMonths (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2009; month = 10; day = 22}; hour = 10; minute = 20; second

= 30}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

22

23 addFormalMonths Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: Adding an amount of formal months to a time .
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: addFormalMonths time int = time

Usage Example:
addFormalMonths (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2030; month = 5; day = 30}; hour = 10; minute = 20; second

= 30}

addFormalMonths (mkTime 2020 2 22 10 20 30) (-125);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2009; month = 11; day = 16}; hour = 10; minute = 20; second

= 33}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

24 shiftUTCYears Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: From an element of type time , take the component year
and shift it (forward or backward) a number of times determined by the
argument of type int .
It is done accordingly to the UTC calendar and taking into account leap
seconds. If the resultant time is not a valid time it takes the last
existing time before of that one.
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: shiftUTCYears time int = time

Usage Example:
shiftUTCYears (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2145; month = 2; day = 22}; hour = 10; minute = 20; second

= 30}

shiftUTCYears (mkTime 2020 2 22 10 20 30) (-25);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

1995; month = 2; day = 22}; hour = 10; minute = 20; second

= 30}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

23

25 addFormalYears Input: time int

Output: time

nat->int remark: This function is not affected because the input int

is an integer also in Coq. Negative values are accepted.

Explanation: Adding an amount of formal years to a time .
Output control: In Coq. If the result of the operation would be bigger
than the maximum time allowed, in the pure version the output is a
special time 10000-01-01-00:00:00, and in the impure version an error
message is issued.

Use: addFormalYears time int = time

Usage Example:
addFormalYears (mkTime 2020 2 22 10 20 30) 125;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2145; month = 1; day = 22}; hour = 10; minute = 20; second

= 30}

addFormalYears (mkTime 2020 2 22 10 20 30) (-25);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

1995; month = 2; day = 28}; hour = 10; minute = 20; second

= 38}
Error messages: 01; 02; 04; 07; 08.
Version: Pure/Impure.

26 timeDifference Input: time time

Output: formalTime

Explanation: If the first argument is greater than or equal to the second
argument, it computes the difference in formalTime between them, i.e.
the duration. Otherwise, it returns 0 in the pure version, and it issues
error message 09 in the impure version.

Use: timeDifference time time = formalTime

Usage Example:
timeDifference (mkTime 2020 2 22 10 20 30) (mkTime 2020 2

11 5 10 25);;

- : formalTime = {FVTLnc.fY = 0; fM = 0; fD = 11; fh = 5;

fm = 10; fs = 5}
Error messages: 01; 02; 09.
Version: Pure/Impure.

27 secTimeDifference Input: time time

Output: int

Explanation: If the first argument is greater than or equal to the second
argument, it computes the difference in seconds between them, i.e. the
duration. Otherwise, it returns 0 in the pure version, and it issues error
message 09 in the impure version.
Usage Example:
secTimeDifference (mkTime 2020 2 22 10 20 30) (mkTime

2020 2 11 5 10 25);;

- : int = 969005

Error messages: 01; 02; 09.

24

28 days of month Input: int int

Output: int .

nat->int remark: Input elements of type int must be non-negative
and correspond to a valid year (1970-9999) and month (1-12) (see Section
2.2).
Explanation: The number of days of a month with respect to that year.
The first argument of the function is expected to be the year while the
second argument should be the month.

Use: days of month int int = int

Usage Example:
days of month 2020 2;;

- : int = 29

Error messages: 06.
Version: Pure/Impure.

29 is leap year Input: int

Output: bool

nat->int remark: Input element of type int must be non-negative
and correspond to a valid year (1970-9999) (see Section 2.2).
Explanation: Whether a year is leap or not.
Takes as input a natural number representing a year, namely Y and
outputs a boolean with the meaning: 1 if it is leap and 0 otherwise.

Use: is leap year int = bool

Usage Example:
is leap year 2020;;

- : bool = true

Error messages: 05.
Version: Pure/Impure.

30 subtractFormal Input: time formalTime

Output: time

Explanation:

Subtracting to a time a formalTime .

Use: SubtractFormal time formalTime = time

Usage Example:
subtractFormal (mkTime 2020 2 22 10 20 30) (mkFormalTime

1 1 1 1 1 1);;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2019; month = 1; day = 22}; hour = 9; minute = 19; second =

29}
Error messages: 01; 02; 10.
Version: Pure/Impure.

31 from FormalTime Input: formalTime

Output: int

Explanation:

Convert to seconds an element of type formalTime .

Use: from FormalTime formalTime = int

Usage Example:
from FormalTime (mkFormalTime 1 1 1 1 1 1);;

- : int = 34218061

Error messages: 04; 10.
Version: Pure/Impure.

25

32 to FormalTime Input: int

Output: formalTime

nat->int remark: Input element of type int must be non-negative
(see Section 2.2).

Explanation: Convert to formalTime an amount of time given in
seconds.

Use: To FormalTime int = formalTime

Usage Example:
to FormalTime 34218061;;

- : formalTime = {FVTLnc.fY = 1; fM = 1; fD = 1; fh = 1;

fm = 1; fs = 1}
Error messages: 04.
Version: Pure/Impure.

33 utc of ltime zname Input: localTime string

Output: time

Explanation: Given a local time and the name of a timezone, it gives
the corresponding UTC time.

Use: utc of ltime zname localTime string = time

Usage Example:
utc of ltime zname (mkLocalTime 2020 2 22 10 20 30)

‘‘Europe/Madrid’’;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 9; minute = 20; second =

30}
Error messages: 11; 12; 13; 14; 15.
Version: Impure.

34 ltime of utc zname Input: time string

Output: localTime

Explanation: Given a UTC time and the name of a timezone, it gives
the corresponding local time.

Use: ltime of utc zname time string = localTime

Usage Example:
ltime of utc zname (mkTime 2020 2 22 10 20 30)

‘‘Europe/Madrid’’;;

- : time = {FVTLnc.rawDate of rawTime = {FVTLnc.year =

2020; month = 2; day = 22}; hour = 11; minute = 20; second

= 30}
Error messages: 01; 02; 07; 08; 15.
Version: Impure.

35 date le Input: date date

Output: bool

Explanation: Given two objects of type date , it gives true if the first
one is less than or equal to the second one, and false otherwise. In
other words, ≤ for dates.

Use: date le date date = bool

Usage Example:
date le (mkDate 2015 10 11) (mkDate 2015 11 10);;

- : bool = true

Error messages: 02.
Version: Pure/Impure.

26

36 date lt Input: date date

Output: bool

Explanation: Given two objects of type date , it gives true if the first
one is less than the second one, and false otherwise. In other words, <
for dates.

Use: date lt date date = bool

Usage Example:
date lt (mkDate 2015 10 11) (mkDate 2015 10 11);;

- : bool = false

Error messages: 02.
Version: Pure/Impure.

37 sort dates Input: date list

Output: date list

Explanation: Given a date list , it returns a list which contains the
same elements in increasing order. In other words, it returns an ordered
date list according to ≤ for dates.

Use: sort dates date list = date list

Usage Example:
sort dates [(mkDate 2015 10 11); (mkDate 2015 11 10);

(mkDate 2015 10 11)];;

- : date list = [{year = 2015; month = 10; day = 11};
{year = 2015; month = 10; day = 11}; {year = 2015; month =

11; day = 10}]
Error messages: 02.
Version: Pure/Impure.

38 time le Input: time time

Output: bool

Explanation: Given two objects of type time , it gives true if the first
one is less than or equal to the second one, and false otherwise. In
other words, ≤ for times.

Use: time le time time = bool

Usage Example:
time le (mkTime 2007 03 31 10 56 43) (mkTime 2007 03 31

14 40 21);;

- : bool = true

Error messages: 01; 02.
Version: Pure/Impure.

39 time lt Input: time time

Output: bool

Explanation: Given two objects of type time , it gives true if the first
one is less than the second one, and false otherwise. In other words, <
for times.

Use: time lt time time = bool

Usage Example:
time lt (mkTime 2007 03 31 10 56 43) (mkTime 2007 03 31

10 56 43);;

- : bool = false

Error messages: 01; 02.
Version: Pure/Impure.

27

40 sort times Input: time list

Output: time list

Explanation: Given a time list , it returns a list which contains the
same elements in increasing order.

Use: sort times time list = time list

Usage Example:
sort times [(mkTime 2007 03 31 10 56 43); (mkTime 2007 03

31 14 40 21)];;

- : time list = [{rawDate of rawTime = {year = 2007; month

= 3; day = 31}; hour = 10; minute = 56; second = 43};
{rawDate of rawTime = {year = 2007; month = 3; day = 31};
hour = 14; minute = 40; second = 21}]
Error messages: 01; 02.
Version: Pure/Impure.

Advantages of the Formal Calendar

As we already explained in page 5, expressing durations of intervals of time in units higher than seconds can be
problematic. The type formalTime represents the objects of our formal calendar, which is a standard way of
expressing durations.

This solution makes the functions addFormal, subtractFormal and timeDifference consistent in the
following sense: given A1, A2 two objects of type time , assume A2 is bigger than A1 and D = timeDifference

A2 A1 is the difference between them given in formalTime ; then we have:

• A2 = addFormal A1 D, and

• A2 = substractFormal A2 D.

The functions whose names start by shiftUTC are defined to fulfill classical applications needed for some
activities, but they are not consistent in the above sense. Its use can lead to some kind of paradoxes.

Example of the paradoxes Informally, we can say that function shiftUTCComponent shifts the corresponding
Component of a date forwards or backwards the number of times we give as input.

These functions have corrections that change higher components when we change Component enough times,
i.e., when there is carry. Thus, it is not only a circular transformation of Component – which could be another
option. For instance, if we change the second component a number of times bigger or equal than the number
of seconds remaining to complete a minute, then the minute component will be also changed, and others if the
carry goes on.

The functions also have corrections so that the output is always a valid time . When the basic shift gives
a non-valid time, the function chooses the closest previous valid time. The paradoxes announced above arise
from this fact.

Consider for instance shiftUTCMonths and a date like 2020-03-31 00:00:00. If we shift forwards once the
month component by shiftUTCMonths (mkTime 2020 3 31 0 0 0) 1 we get 2020-04-30 00:00:00. The raw
shift gives 2020-04-31 00:00:00 but since this is not a valid time the function goes to the closest previous
valid time, which is the given result. But now, if we apply again the function to shift backwards this time,
shiftUTCMonths (mkTime 2020 4 30 0 0 0) -1 gives 2020-03-30 00:00:00 and not 2020-03-31 00:00:00. This
is one of the possible paradoxes, the so called 1− 1 6= 0. This is an undesirable behavior from the arithmetical
viewpoint, since we have checked that it is not always the case that

shiftUTCMonths (shiftUTCMonths t n) -n = t.

Arithmetic using the Formal Calendar Using our Formal Calendar as a system of units, with its
corresponding addFormalComponent functions, we avoid the arithmetical paradoxes and problems that the
shiftUTCComponent functions present. For instance, composition behaves as expected, e.g.

addFormalComponent (addFormalComponent t n) -n = t.

28

Going back to the previous example,

addFormalMonths (addFormalMonths (mkTime 2020 3 31 0 0 0) 1) -1 = 2020-03-31 00:00:00.

2.5 Error messages

Error message Description of the error

01 Only times in UTC (with leap seconds and
starting in 1970, ending in 9999) are accepted

Raised when the components given for creating a
time do not comply with the allowed bounds and
hence, the time does not exist in UTC

02 Only dates in UTC (starting in 1970, ending
in 9999) are accepted

Raised when the components given for creating a
date do not comply with the allowed bounds and
hence, the date does not exist in UTC

03 Only timestamps between 0 and 253402300826
are accepted

Raised when the timestamp given does not satisfy
the bounds

04 Integer out of bounds: either the function does
not accept negative inputs, or the value is too
big for machine representation

Raised when the integer given is bigger than the
maximum machine integer (depends on the user’s
system), or when it is negative and the function
does not accept negative values

05 Only years between 1970 and 9999 are
accepted

Raised when the year given to a function that
expects a year (for example, is leap year) falls
out of bounds

06 Months are a number between 1 and 12 Raised when the month given to a function that
expects a month (for example, days of month)
falls out of bounds

07 Underflow: the resulting time is before 1970 Raised when the result of shifting or adding a
duration to a time is previous to the epoch

08 Overflow: the resulting time is after 9999 Raised when the result of shifting or adding a
duration to a time is after the maximum time
allowed

09 Time difference can only be computed if the
first argument is greater than or equal to the
second one

Raised when trying to compute the
timeDifference or secTimeDifference with a
first argument smaller than the second

10 The components of a formal time should not
be negative.
The second component should be less than 60.
The minute component should be less than 60.
The hour component should be less than 24.
The day component should be less than 30.
The month component should be either less
than 12, or equal to 12 only in case the day
component is less than 5. This is because
formal years have 365 days, and 12 formal
months are 360 days.

Raised when some component given for creating
a formalTime does not satisfy the restrictions

11 Accepted local times are valid UTC times with
the exception of a possible second = 60

Raised when the components given for creating
a localTime do not comply with the allowed
bounds, which are the same as for time except
for the second, which can be equal to 60

12 The timezone does not have a leap second
occurring at that time

Raised when the local time given by the user has
second = 60 and the corresponding minute does
not have any leap second at the given timezone

29

13 The local time you introduced is ambiguous in
[the given timezone] due to DST. It happened
first at [first UTC time it happened]. It
happened again at [second UTC time it
happened].

Raised when the given local time is ambiguous
because there was a change of time for daily
saving time (DST). For example, 2019-11-03
01:15:00 America/New York

14 The local time you introduced does not exist
in [the given timezone] due to DST. The
change of time was at [UTC time DST
occured].

Raised when the given local time does not exist
because there was a change of time for daily
saving time (DST). For example, 2019-03-31
02:00:00 Europe/Berlin

15 The timezone [given zone name] was not found Raised when the time zone introduced does not
correspond to any valid time zone name in the tz
database

30

3 Coq References

OCaml Coq

date rawDate = { year : nat; month : nat; day : nat; }

time
rawTime = {rawDate of rawTime : rawDate; hour : nat;

minute : nat; second : nat;}

clock
rawClock = { chour : nat; cminute : nat; csecond :

nat; }

formalTime
formalTime = {fY : nat; fM : nat; fD : nat; fh : nat;

fm : nat; fs : nat;}

Table 5: OCaml - Coq types correspondence.

OCaml Coq

Name: Name: References:
1 date of time rawDate of rawTime Part of the ontology

2 - 10 Direct extraction from Coq
11 utc timestamp Unix timestamp Theorem Unix timestampE

12 from UTC timestamp from Unix timestamp Theorem from Unix timestampE

13 addFormal AddFormal Lemma addP

Lemma add from timestampP

Lemma add valid

14 shiftUTCSeconds ShiftUTCSeconds Lemma ShiftUTCSeconds valid

Lemma ShiftUTCSecondsP

15 addFormalSeconds AddFormalSeconds Lemma AddFormalSeconds valid

Lemma AddFormalSeconds timestamp

Lemma AddFormalSeconds no Overflow

Lemma AddFormalSeconds no Underflow

Lemma AddFormalSeconds from timestamp

16 shiftUTCMinutes ShiftUTCMinutes Lemma ShiftUTCMinutes valid

Lemma ShiftUTCMinutesP

17 addFormalMinutes AddFormalMinutes Depends on AddFormalSeconds

18 shiftUTCHours ShiftUTCHours Lemma ShiftUTCHours valid

Lemma ShiftUTCHoursP

19 addFormalHours AddFormalHours Depends on AddFormalSeconds

20 shiftUTCDays ShiftUTCDays Lemma ShiftUTCDays valid

Lemma ShiftUTCDaysP

21 addFormalDays AddFormalDays Depends on AddFormalSeconds

22 shiftUTCMonths ShiftUTCMonths Lemma ShiftUTCMonths valid

Lemma ShiftUTCMonthsP

23 addFormalMonths AddFormalMonths Depends on AddFormalSeconds

24 shiftUTCYears ShiftUTCYears Lemma ShiftUTCYears valid

Lemma ShiftUTCYearsP

25 addFormalYears AddFormalYears Depends on AddFormalSeconds

26 timeDifference TimeDifference Lemma time difference addK

Lemma add time differenceK

Lemma time difference subtractK

Lemma subtract time differenceK

27 - 29 Direct extraction from Coq
30 subtractFormal SubtractFormal Lemma subtract timestamp

31

Lemma subtract from formalTime

Lemma subtractK

Lemma addK

31 from FormalTime from FormalTime Lemma from formalTime nil

Lemma from formalTime cons

Lemma from formalTimeK

32 to FormalTime to FormalTime Lemma to formalTimeK

Lemma to formalTimeP

Lemma to formalTime not empty

33; 34 Not available in Coq
35 date le led Lemma rawDate leE

36 date lt ltd Lemma rawDate ltE

37 sort dates sort rawDates Lemma sort sorted

Lemma mem sort

38 time le let Lemma rawTime leE

39 time lt ltt Lemma rawTime ltE

40 sort times sort rawTimes Lemma sort sorted

Lemma mem sort

32

Appendix A Tables

Year Jun 30 Dec 31 Year Jun 30 Dec 31
1972 1 1 1998 0 1
1973 0 1 1999 0 0
1974 0 1 2000 0 0
1975 0 1 2001 0 0
1976 0 1 2002 0 0
1977 0 1 2003 0 0
1978 0 1 2004 0 0
1979 0 1 2005 0 1
1980 0 0 2006 0 0
1981 1 0 2007 0 0
1982 1 0 2008 0 1
1983 1 0 2009 0 0
1984 0 0 2010 0 0
1985 1 0 2011 0 0
1986 0 0 2012 1 0
1987 0 1 2013 0 0
1988 0 0 2014 0 0
1989 0 1 2015 1 0
1990 0 1 2016 0 1
1991 0 0 2017 0 0
1992 1 0 2018 0 0
1993 1 0 Jun 30 Dec 31
1994 1 0 Total 11 16
1995 0 1 27
1996 0 0 Current TAI − UTC
1997 1 0 37

Table 7: Leap seconds as of December 2018.

America/St Johns America/Bogota UTC+0 Europe/Madrid Europe/Moscow
1972-06-30 21:29:60 1972-06-30 18:59:60 1972-06-30 23:59:60 1972-07-01 00:59:60 1972-07-01 02:59:60
1994-06-30 21:29:60 1994-06-30 18:59:60 1994-06-30 23:59:60 1994-07-01 01:59:60 1994-07-01 03:59:60
2005-12-31 20:29:60 2005-12-31 18:59:60 2005-12-31 23:59:60 2006-01-01 00:59:60 2006-01-01 02:59:60

Table 8: Examples of local leap seconds

33

A B C D E
General
interpretation
of the n-th position
the clock can take

Positions that can
be taken by the
central element
with repetitive
movements in the
round clock:

Time format in
UTC linked to each
position:

Natural number
linked to the
position in time
real format, that
is, accumulated
seconds:

Interpretation of
time real concept
linked to the
position. That is,
we can interpret
the time real as:
How many periodic
movements the
central element
did to reach the
corresponding
position?

n=1 1 (Twelve o’clock
position)

1970/1/1/00:00:00 0 movements to
reach the position
1? In this case 0
movements because
is the starting
point.

n=2 2 1970/1/1/00:00:01 1 movements to reach
the position 2? 1
movement.

3 3 1970/1/1/00:00:02 2 2 movements.
4 4 1970/1/1/00:00:03 3 3 movements.
60 60 1970/1/1/00:00:59 59 59 movements.
61 1 (Twelve o’clock

position again)
1970/1/1/00:01:00 60 60 movements.

62 2 1970/1/1/00:01:01 61 61 movements.
120 60 1970/1/1/00:01:59 119 119 movements.
121 1 1970/1/1/00:02:00 120 120 movements.
151 31 1970/1/1/00:02:30 150 150 movements.
181 1 1970/1/1/00:03:00 180 180 movements.
241 1 1970/1/1/00:04:00 240 240 movements.
256 16 1970/1/1/00:04:15 255 255 movements.
301 1 1970/1/1/00:05:00 300 300 movements.
86401 1 1970/1/2/00:00:00 86400 86400 movements.

Table 9: For the following table we consider we are in the beginning of our time, we recall this is 1970-01-01
00:00:00.

34

Appendix B tz Tables

Time Zones List

Here we have the list of Time Zones considered. We list them by continents and countries. When in a time zone
it is said that is alias of another is because they are equivalent. The principal one is marked as canonical.

35

36

AFRICA
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[CI] IVORY COAST [+0] Africa/Abidjan Canonical
[GH] GHANA [+0] Africa/Accra Canonical
[ET] ETHIOPIA [+3] Africa/Addis Ababa alias of Africa/Nairobi
[DZ] ALGERIA [+1] Africa/Algiers Canonical
[ER] ERITREA [+3] Africa/Asmara alias of Africa/Nairobi
[ML] MALI [+0] Africa/Bamako alias of Africa/Abidjan
[CF] CENTRAL AFRICAN REPUBLIC [+1] Africa/Bangui alias of Africa/Lagos
[GM] GAMBIA [+0] Africa/Banjul alias of Africa/Abidjan
[GW] GUINEA-BISSAU [+0] Africa/Bissau Canonical
[MW] MALAWI [+2] Africa/Blantyre alias of Africa/Maputo
[CG] CONGO (REPUBLIC OF CONGO) [+1] Africa/Brazzaville alias of Africa/Lagos
[BI] BURUNDI [+2] Africa/Bujumbura alias of Africa/Maputo
[EG] EGYPT [+2] Africa/Cairo Canonical
[MA] MOROCCO [+1] Africa/Casablanca Canonical
[GN] GUINEA [+0] Africa/Conakry Alias of Africa/Abidjan
[SN] SENEGAL [+0] Africa/Dakar Alias of Africa/Abidjan
[TZ] TANZANIA [+3] Africa/Dar es Salaam alias of Africa/Nairobi
[DJ] DJIBOUTI [+3] Africa/Djibouti alias of Africa/Nairobi
[CM] CAMEROON [+1] Africa/Douala alias of Africa/Lagos
[BW] BOTSWANA [+2] Africa/Gaborone alias of Africa/Maputo
[ZW] ZIMBAWE [+2] Africa/Harare alias of Africa/Maputo
[ZA] SOUTH AFRICA [+2] Africa/Johannesburg Canonical
[SS] SOUTH SUDAN [+3] Africa/Juba Canonical
[UG] UGANDA [+3] Africa/Kampala alias of Africa/Nairobi
[SD] SUDAN [+2] Africa/Khartoum Canonical
[RW] RWANDA [+2] Africa/Kigali alias of Africa/Maputo
[CD] CONGO (DEMOCRATIC REPUBLIC OF CONGO) [+1] Africa/Kinshasa alias of Africa/Lagos
[NG] NIGERIA [+1] Africa/Lagos Canonical
[GA] GABON [+1] Africa/Libreville alias of Africa/Lagos
[AO] ANGOLA [+1] Africa/Luanda alias of Africa/Lagos
[CD] CONGO (DEMOCRATIC REPUBLIC OF CONGO) [+2] Africa/Lubumbashi alias of Africa/Maputo
[ZM] ZAMBIA [+2] Africa/Lusaka alias of Africa/Maputo
[GQ] EQUATORIAL GUINEA [+1] Africa/Malabo alias of Africa/Lagos
[MZ] MOZAMBIQUE [+2] Africa/Maputo Canonical
[LS] LESOTHO [+2] Africa/Maseru alias of Africa/Johannesburg
[SZ] SWAZILAND [+2] Africa/Mbabane alias of Africa/Johannesburg
[SO] SOMALIA [+3] Africa/Mogadishu alias of Africa/Nairobi
[LR] LIBERIA [+0] Africa/Monrovia Canonical

37

AFRICA continuation
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[KE] KENYA [+3] Africa/Nairobi Canonical
[TD] CHAD [+1] Africa/Ndjamena Canonical
[NE] NIGER [+1] Africa/Niamey alias of Africa/Lagos
[BJ] BENIN [+1] Africa/Porto-Novo alias of Africa/Lagos
[ST] SAO TOME AND PRINCIPE [+1] Africa/Sao Tome alias of Africa/Lagos
[LY] LIBYA [+2] Africa/Tripoli Canonical
[TN] TUNISIA [+1] Africa/Tunis Canonical
[NA] NAMIBIA [+1] Africa/Windhoek Canonical
[CV] CABO VERDE [-1] Atlantic/Cape Verde Canonical
[SH] SAINT HELENA, ASCENSION AND TRISTAN DA CUNHA [+0] Atlantic/St Helena alias of Africa/Abidjan
[MG] MADAGASCAR [+3] Indian/Antananarivo alias of Africa/Nairobi
[KM] COMOROS [+3] Indian/Comoro alias of Africa/Nairobi
[TF] FRENCH SOUTHERN AND ANTARTIC ISLANDS [+5] Indian/Kerguelen Canonical
[SC] SEYCHELLES [+4] Indian/Mahe Canonical
[MU] MAURITIUS [+4] Indian/Mauritius Canonical
[YT] MAYOTTE [+3] Indian/Mayotte alias of Africa/Nairobi

[RE] RÉUNION [+4] Indian/Reunion Canonical38

AMERICA
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[US] USA (ALEUTIAN ISLANDS) [-10] America/Adak Canonical
[US] USA (ALASKA) [-9] America/Anchorage Canonical
[AI] ANGUILLA [-4] America/Anguilla alias of America/Port of Spain
[AG] ANTIGUA AND BARBUDA [-4] America/Antigua alias of America/Port of Spain
[BR] BRAZIL (STATE OF TOCANTINS) [-3] America/Araguaina Canonical
[AR] ARGENTINA [-3] America/Argentina/Buenos Aires Canonical
[AR] ARGENTINA [-3] America/Argentina/Catamarca Canonical
[AR] ARGENTINA [-3] America/Argentina/ComodRivadavia alias of Catamarca
[AR] ARGENTINA [-3] America/Argentina/Cordoba Canonical
[AR] ARGENTINA [-3] America/Argentina/Jujuy Canonical
[AR] ARGENTINA [-3] America/Argentina/La Rioja Canonical
[AR] ARGENTINA [-3] America/Argentina/Mendoza Canonical
[AR] ARGENTINA [-3] America/Argentina/Rio Gallegos Canonical
[AR] ARGENTINA [-3] America/Argentina/Salta Canonical
[AR] ARGENTINA [-3] America/Argentina/San Juan Canonical
[AR] ARGENTINA [-3] America/Argentina/San Luis Canonical
[AR] ARGENTINA [-3] America/Argentina/Tucuman Canonical
[AR] ARGENTINA [-3] America/Argentina/Ushuaia Canonical
[AW] ARUBA [-4] America/Aruba alias of America/Curasao
[PY] PARAGUAY [-4] America/Asuncion Canonical
[CA] CANADA [-5] America/Atikokan Canonical
[US] USA (ALASKA) [-10] America/Atka alias of America/Adak
[BR] BRAZIL (BAHIA) [-3] America/Bahia Canonical
[MX] MEXICO (CENTRAL TIME) [-6] America/Bahia Banderas Canonical
[BB] BARBADOS [-4] America/Barbados Canonical
[BR] BRAZIL (AMAPA) [-3] America/Belem Canonical
[BZ] BELIZE (BAHIA) [-6] America/Belize Canonical
[CA] CANADA [-4] America/Blanc-Sablon Canonical
[BR] BRAZIL (RORAIMA) [-4] America/Boa Vista Canonical
[CO] COLOMBIA [-6] America/Bogota Canonical
[US] USA [-7] America/Boise Canonical
[AR] ARGENTINA [-3] America/Buenos Aires alias of America/Argentina/Buenos Aires
[CA] CANADA [-7] America/Cambridge Bay Canonical
[BR] BRAZIL (MATO GROSSO DO SUL) [-4] America/Campo Grande Canonical
[MX] MEXICO (EASTERN STANDARD TIME) [-5] America/Cancun Canonical
[VE] VENEZUELA [-4] America/Caracas Canonical
[AR] ARGENTINA [-3] America/Catamarca alias of America/Argentina/Catamarca
[GF] FRENCH GUIANA [-3] America/Cayenne Canonical
[KY] CAYMAN ISLANDS [-5] America/Cayman alias of America/Panama
[US] USA (CENTRAL) [-6] America/Chicago Canonical

39

AMERICA continuation
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[MX] MEXICO (MOUNTAIN TIME/CHIHUAHUA) [-7] America/Chihuahua Canonical
[CA] CANADA [-5] America/Coral Harbour alias of America/Atikokan
[AR] ARGENTINA [-3] America/Cordoba alias of America/Argentina/Cordoba
[CR] COSTA RICA [-6] America/Costa Rica Canonical
[CA] CANADA [-7] America/Creston Canonical
[BR] BRAZIL (MATO GROSSO) [-3] America/Cuiaba Canonical
[CW] CURAÇAO [-4] America/Curacao Canonical
[GL] GREENLAND [+0] America/Danmarkshavn Canonical
[CA] CANADA [-8] America/Dawson Canonical
[CA] CANADA [-7] America/Dawson Creek Canonical
[US] USA (MOUNTAIN) [-7] America/Denver Canonical
[US] USA (EASTERN) [-5] America/Detroit Canonical
[DM] DOMINICA [-4] America/Dominica alias of America/Port of Spain
[CA] CANADA [-7] America/Edmonton Canonical
[BR] BRAZIL (AMAZONAS) [-5] America/Eirunepe Canonical
[SV] EL SALVADOR [-6] America/El Salvador Canonical
[MX] MEXICO [-8] America/Ensenada alias of America/Tijuana
[CA] CANADA [-7] America/Fort Nelson Canonical
[US] USA (EASTERN-IN) [-5] America/Fort Wayne alias of America/Indiana/Indianapolis
[BR] BRAZIL (NORTHEAST) [-3] America/Fortaleza Canonical
[CA] CANADA [-4] America/Glace Bay Canonical
[GL] GREENLAND [-3] America/Godthab Canonical
[CA] CANADA [-4] America/Goose Bay Canonical
[TC] TURKS AND CAICOS [-5] America/Grand Turk Canonical
[GD] GRENADA [-4] America/Grenada alias of Europe/Port of Spain
[GP] GUADELOUPE [-4] America/Guadeloupe alias of Europe/Port of Spain
[GT] GUATEMALA [-6] America/Guatemala Canonical
[EC] ECUADOR [-5] America/Guayaquil Canonical
[GY] GUYANA [-4] America/Guyana Canonical
[CA] CANADA [-4] America/Halifax Canonical
[CU] CUBA [-5] America/Havana Canonical
[MX] MEXICO (MOUNTAIN STANDARD TIME/SONORA) [-7] America/Hermosillo Canonical
[US] USA (EASTERN-IN) [-5] America/Indiana/Indianapolis Canonical
[US] USA (CENTRAL-IN/STARKE) [-6] America/Indiana/Knox Canonical
[US] USA (EASTERN-IN/CRAWFORD) [-5] America/Indiana/Marengo Canonical
[US] USA (EASTERN-IN/PIKE) [-5] America/Indiana/Petersburg Canonical
[US] USA (CENTRAL-IN/PERRY) [-6] America/Indiana/Tell City Canonical
[US] USA (EASTERN-IN/SWITZERLAND) [-5] America/Indiana/Vevay Canonical

40

AMERICA continuation
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[US] USA (EASTERN-IN) [-5] America/Indiana/Vincennes Canonical
[US] USA (EASTERN-IN) [-5] America/Indiana/Winamac Canonical
[US] USA (EASTERN-IN) [-5] America/Indianapolis alias of America/Indiana/Indianapolis
[CA] CANADA [-7] America/Inuvik Canonical
[CA] CANADA [-5] America/Iqaluit Canonical
[JM] JAMAICA [-5] America/Jamaica Canonical
[AR] ARGENTINA [-3] America/Jujuy alias of America/Argentina/Jujuy
[US] USA (ALASKA) [-9] America/Juneau Canonical
[US] USA (EASTERN-KY/LOUISVILLE) [-5] America/Kentucky/Louisville Canonical
[US] USA (EASTERN-KY/WAYNE) [-5] America/Kentucky/Monticello Canonical
[US] USA [-6] America/Knox IN alias of America/Indiana/Knox
[BQ] CARIBBEAN NETHERLANDS [-4] America/Kralendijk alias of America/Curasao
[BO] BOLIVIA [-4] America/La Paz Canonical
[PE] PERU [-5] America/Lima Canonical
[US] USA (PACIFIC) [-8] America/Los Angeles Canonical
[US] USA [-5] America/Louisville alias of America/Kentucky/Louisville
[SX] SINT MAARTEN [-4] America/Lower Princes alias of America/Curacao
[BR] BRAZIL (ALAGOAS, SERGIPE) [-3] America/Maceio Canonical
[NI] NICARAGUA [-6] America/Managua Canonical
[BR] BRAZIL (AMAZONAS EAST) [-4] America/Manaus Canonical
[MF] SAINT MARTIN [-4] America/Marigot alias of America/Port of Spain
[MQ] MARTINIQUE [-4] America/Martinique Canonical
[MX] MEXICO (CENTRAL TIME/US) [-6] America/Matamoros Canonical
[MX] MEXICO (MOUNTAIN TIME/BAJA CALIFORNIA) [-7] America/Mazatlan Canonical
[AR] ARGENTINA [-3] America/Mendoza alias of America/Argentina/Mendoza
[US] USA (CENTRAL-MI/WISCONSIN) [-6] America/Menominee Canonical
[MX] MEXICO (CENTRAL TIME/YUCATAN) [-6] America/Merida Canonical
[US] USA (ALASKA) [-9] America/Metlakatla Canonical
[MX] MEXICO (CENTRAL TIME) [-6] America/Mexico City Canonical
[PM] SAINT PIERRE AND MIQUELON [-3] America/Miquelon Canonical
[CA] CANADA [-4] America/Moncton Canonical
[MX] MEXICO (CENTRAL TIME/DURANGO) [-6] America/Monterrey Canonical
[UY] URUGUAY [-3] America/Montevideo Canonical
[CA] CANADA [-5] America/Montreal alias of America/Toronto
[MS] MONTSERRAT [-4] America/Montserrat alias of America/Port of Spain
[BS] BAHAMAS [-5] America/Nassau Canonical
[US] USA (EASTERN) [-5] America/New York Canonical
[CA] CANADA [-5] America/Nipigon Canonical
[US] USA (ALASKA) [-9] America/Nome Canonical
[BR] BRAZIL (ATLANTIC ISLANDS) [-2] America/Noronha Canonical

41

AMERICA continuation
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[US] USA (CENTRAL-ND/MERCER) [-6] America/North Dakota/Beulah Canonical
[US] USA (CENTRAL-ND/OLIVER) [-6] America/North Dakota/Center Canonical
[US] USA (CENTRAL-ND/MORTON RURAL) [-6] America/North Dakota/New Salem Canonical
[MX] MEXICO (MOUNTAIN TIME/CHIHUAHUA) [-7] America/Ojinaga Canonical
[PA] PANAMA [-5] America/Panama Canonical
[CA] CANADA [-5] America/Pangnirtung Canonical
[SR] SURINAME [-3] America/Paramaribo Canonical
[US] USA (ARIZONA) [-7] America/Phoenix Canonical
[HT] HAITI [-5] America/Port-au-Prince Canonical
[TT] TRINIDAD AND TOBAGO [-4] America/Port of Spain Canonical
[BR] BRAZIL [-5] America/Porto Acre alias of America/Rio Branco
[BR] BRAZIL (RONDONIA) [-4] America/Porto Velho Canonical
[PR] PUERTO RICO [-4] America/Puerto Rico Canonical
[CL] CHILE (MAGALLANES) [-3] America/Punta Arenas Canonical
[CA] CANADA [-6] America/Rainy River Canonical
[CA] CANADA [-6] America/Rankin Inlet Canonical
[BR] BRAZIL (PERNAMBUCO) [-3] America/Recife Canonical
[CA] CANADA [-6] America/Regina Canonical
[CA] CANADA [-6] America/Resolute Canonical
[BR] BRAZIL (ACRE) [-5] America/Rio Branco Canonical
[AR] ARGENTINA [-3] America/Rosario alias of America/Argentina/Cordoba
[MX] MEXICO [-8] America/Santa Isabel alias of America/Tijuana
[BR] BRAZIL (PARA) [-3] America/Santarem Canonical
[CL] CHILE [-4] America/Santiago Canonical
[DO] DOMINICAN REPUBLIC [-4] America/Santo Domingo Canonical
[BR] BRAZIL (SOUTHEAST) [-3] America/Sao Paulo Canonical
[GL] GREENLAND [-1] America/Scoresbysund Canonical
[US] USA [-7] America/Shiprock alias of America/Denver
[US] USA (ALASKA) [-9] America/Sitka Canonical
[BL] SAINT BARTHELEMY [-4] America/St Barthelemy alias of America/Port of Spain
[CA] CANADA [-3:30] America/St Johns Canonical
[KN] SAINT KITTS AND NEVY [-4] America/St Kitts alias of America/Port of Spain
[LC] SAINT LUCIA [-4] America/St Lucia alias of America/Port of Spain
[VI] VIRGIN ISLANDS OF USA [-4] America/St Thomas alias of America/Port of Spain
[VC] SAINT VINCENT [-4] America/St Vincent alias of America/Port of Spain
[CA] CANADA [-6] America/Swift Current Canonical
[HN] HONDURAS [-6] America/Tegucigalpa Canonical
[GL] GREENLAND [-4] America/Thule Canonical
[CA] CANADA [-5] America/Thunder Bay Canonical

42

AMERICA continuation
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[MX] MEXICO (PACIFIC TIME/BAJA CALIFORNIA) [-8] America/Tijuana Canonical
[CA] CANADA [-5] America/Toronto Canonical
[VG] VIRGIN ISLANDS [-4] America/Tortola alias of America/Port of Spain
[CA] CANADA [-8] America/Vancouver Canonical
[CA] CANADA [-8] America/Whitehorse Canonical
[CA] CANADA [-6] America/Winnipeg Canonical
[US] USA (ALASKA) [-9] America/Yakutat Canonical
[CA] CANADA [-7] America/Yellowknife Canonical
[BM] BERMUDA [-4] Atlantic/Bermuda Canonical
[GS] SOUTH GEORGIA AND SOUTH SANDWICH ISLANDS [-2] Atlantic/South Georgia Canonical
[FK] FALKAN ISLANDS [-3] Atlantic/Stanley Canonical
[CL] CHILE (EASTER ISLANDS) [-6] Pacific/Easter Canonical
[EC] ECUADOR [-6] Pacific/Galapagos Canonical
[GU] GUAM [+10] Pacific/Guam Canonical
[US] USA (HAWAII) [-10] Pacific/Honolulu Canonical
[US] USA (HAWAII) [-10] Pacific/Johnston alias of Pacific/Honolulu
[UM] US MINOR OUTLAYING ISLANDS [-11] Pacific/Midway Link to Pacific/Pago Pago
[AS] AMERICAN SAMOA [-11] Pacific/Pago Pago Canonical
[MP] NORTHERN MARIANA ISLANDS [+10] Pacific/Saipan alias of Pacific/Guam
[AS] AMERICAN SAMOA [-11] Pacific/Samoa alias of Pacific/Pago Pago
[UM] US MINOR OUTLAYING ISLANDS [+12] Pacific/Wake Canonical

43

ANTARCTICA
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[AQ] ANTARCTICA [+11] Antarctica/Casey Canonical
[AQ] ANTARCTICA [+7] Antarctica/Davis Canonical
[AQ] ANTARCTICA [+10] Antarctica/DumontDUrville Canonical
[AQ] ANTARCTICA [+11] Antarctica/Macquarie Canonical
[AQ] ANTARCTICA [+5] Antarctica/Mawson Canonical
[AQ] ANTARCTICA [+12] Antarctica/McMurdo alias of Pacific/Auckland
[AQ] ANTARCTICA [-3] Antarctica/Palmer Canonical
[AQ] ANTARCTICA [-3] Antarctica/Rothera Canonical
[AQ] ANTARCTICA [+12] Antarctica/South Pole alias of Pacific/Auckland
[AQ] ANTARCTICA [+3] Antarctica/Syowa Canonical
[AQ] ANTARCTICA [+0] Antarctica/Troll Canonical
[AQ] ANTARCTICA [+6] Antarctica/Vostok Canonical

44

ASIA
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[YE] YEMEN [+3] Asia/Aden alias of Asia/Riyahd
[KZ] KAZAKHSTAN [+6] Asia/Almaty Canonical
[JO] JORDAN [+2] Asia/Amman Canonical
[RU] RUSSIA [+12] Asia/Anadyr Canonical
[KZ] KAZAKHSTAN [+5] Asia/Aqtau Canonical
[KZ] KAZAKHSTAN [+5] Asia/Aqtobe Canonical
[TM] TURKMENISTAN [+5] Asia/Ashgabat Canonical
[KZ] KAZAKHSTAN [+5] Asia/Atyrau Canonical
[IQ] IRAQ [+3] Asia/Baghdad Canonical
[BH] BAHRAIN [+3] Asia/Bahrain Canonical
[AZ] AZERBAIJAN [+4] Asia/Baku Canonical
[TH] THAILAND [+7] Asia/Bangkok Canonical
[RU] RUSSIA [+7] Asia/Barnaul Canonical
[LB] LEBANON [+2] Asia/Beirut Canonical
[KG] KYRGYSTAN [+6] Asia/Bishkek Canonical
[BN] BRUNEI [+8] Asia/Brunei Canonical
[IN] INDIA [+5:30] Asia/Calcutta alias of Asia/Kolkata
[RU] RUSSIA [+9] Asia/Chita Canonical
[MN] MONGOLIA [+8] Asia/Choibalsan Canonical
[CN] CHINA [+8] Asia/Chongqing alias of Asia/Sanghai
[CN] CHINA [+8] Asia/Chungking alias of Asia/Sanghai
[LK] SRI LANKA [+5:30] Asia/Colombo Canonical
[BD] BANGLADESH [+6] Asia/Dacca alias of Asia/Dhaka
[TM] TURKMENISTAN [+5] Asia/Damascus Canonical
[BD] BANGLADESH [+6] Asia/Dhaka Canonical
[TL] EAST TIMOR [+9] Asia/Dili Canonical
[AE] EMIRATES [+5] Asia/Dubai Canonical
[TJ] TAJIKISTAN [+5] Asia/Dushanbe Canonical
[CY] CYPRUS [+2] Asia/Famagusta Canonical
[PS] PALESTINE [+2] Asia/Gaza Canonical
[CN] CHINA [+8] Asia/Harbin alias of Asia/Sanghai
[PS] PALESTINE [+2] Asia/Hebron Canonical
[VN] VIETNAM [+7] Asia/Ho Chi Minh Canonical
[HK] HONG KONG [+8] Asia/Hong Kong Canonical
[MN] MONGOLIA [+7] Asia/Hovd Canonical
[RU] RUSSIA [+8] Asia/Irkutsk Canonical
[TR] TURKEY [+3] Asia/Istanbul alias of Europe/Istanbul
[ID] INDONESIA [+7] Asia/Jakarta Canonical
[ID] INDONESIA [+9] Asia/Jayapura Canonical

45

ASIA continuation
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[IL] ISRAEL [+2] Asia/Jerusalem Canonical
[AF] AFGHANISTAN [+4:30] Asia/Kabul Canonical
[RU] RUSSIA [+12] Asia/Kamchatka Canonical
[PK] PAKISTAN [+5] Asia/Karachi Canonical
[CN] CHINA [+6] Asia/Kashgar Canonical
[NP] NEPAL [+5:45] Asia/Kathmandu Canonical
[NP] NEPAL [+5:45] Asia/Katmandu alias of Asia/Kathmandu
[SY] SYRIA [+2] Asia/Katmandu alias of Asia/Sanghai
[RU] RUSSIA [+9] Asia/Khandyga Canonical
[IN] INDIA [+5:30] Asia/Kolkata Canonical
[RU] RUSSIA [+7] Asia/Krasnoyarsk Canonical
[MY] MALASYA [+8] Asia/Kuala Lumpur Canonical
[MY] MALASYA [+8] Asia/Kuching Canonical
[KW] KWAIT [+3] Asia/Kuwait alias of Asia/Riyahd
[MO] MACAU [+8] Asia/Macao alias of Asia/Macau
[MO] MACAU [+8] Asia/Macau Canonical
[RU] RUSSIA [+11] Asia/Magadan Canonical
[ID] INDONESIA [+8] Asia/Makassar Canonical
[PH] PHILIPPINES [+8] Asia/Manila Canonical
[OM] OMAN [+4] Asia/Muscat alias of Asia/Dubai
[RU] RUSSIA [+7] Asia/Novokuznetsk Canonical
[RU] RUSSIA [+7] Asia/Novosibirsk Canonical
[RU] RUSSIA [+6] Asia/Omsk Canonical
[KZ] KAZAKHSTAN [+5] Asia/Oral Canonical
[KH] CAMBODIA [+7] Asia/Phnom Penh alias of Asia/Bangkok
[ID] INDONESIA [+7] Asia/Pontianak Canonical
[KP] NORTH COREA [+9] Asia/Pyongyang Canonical
[QA] QATAR [+3] Asia/Qatar Canonical
[KZ] KAZAKHSTAN [+5] Asia/Qyzylorda Canonical
[MM] MYANMAR [+6:30] Asia/Rangoon alias of Asia/Yangon
[SA] SAUDI ARABIA [+3] Asia/Riyadh Canonical
[VN] VIETNAM [+7] Asia/Saigon alias of Asia/Ho Chi Minh
[RU] RUSSIA [+11] Asia/Sakhalin Canonical
[UZ] UZBEKISTAN [+5] Asia/Samarkand Canonical
[KR] SOUTH KOREA [+9] Asia/Seoul Canonical
[CN] CHINA [+8] Asia/Shanghai Canonical
[SG] SINGAPORE [+8] Asia/Singapore Canonical
[RU] RUSSIA [+11] Asia/Srednekolymsk Canonical
[TW] TAIWAN [+8] Asia/Taipei Canonical
[UZ] UZBEKISTAN [+5] Asia/Tashkent Canonical

46

ASIA continuation
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[GE] GEORGIA [+4] Asia/Tbilisi Canonical
[IR] IRAN [+3:30] Asia/Tehran Canonical
[IL] ISRAEL [+2] Asia/Tel Aviv alias of Asia/Jerusalem
[BT] BUTHAN [+3:30] Asia/Thimbu alias of Asia/Thimphu
[BT] BUTHAN [+3:30] Asia/Thimphu Canonical
[JP] JAPAN [+9] Asia/Tokyo Canonical
[RU] RUSSIA [+7] Asia/Tomsk Canonical
[ID] INDONESIA [+8] Asia/Ujung Pandang alias of Asia/Makassar
[MN] MONGOLIA [+8] Asia/Ulaanbaatar Canonical
[MN] MONGOLIA [+8] Asia/Ulan Bator alias of Asia/Ulaanbaatar
[CN] CHINA [+6] Asia/Urumqi Canonical
[RU] RUSSIA [+10] Asia/Ust-Nera Canonical
[LA] LAOS [+7] Asia/Vientiane Canonical
[RU] RUSSIA [+10] Asia/Vladivostok Canonical
[RU] RUSSIA [+9] Asia/Yakutsk Canonical
[MM] MYANMAR [+6:30] Asia/Yangon Canonical
[RU] RUSSIA [+5] Asia/Yekaterinburg Canonical
[AM] ARMENIA [+4] Asia/Yerevan Canonical
[MV] MALDIVES [+5] Indian/Maldives Canonical

47

EUROPE
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[ES] SPAIN (CEUTA, MELILLA) [+1] Africa/Ceuta Canonical
[PT] PORTUGAL (AZORES) [-1] Atlantic/Azores Canonical
[BM] BERMUDA [-4] Atlantic/Bermuda Canonical
[ES] SPAIN (CANARY ISLANDS) [+0] Atlantic/Canary Canonical
[FO] FAROE ISLANDS [+1] Atlantic/Faeroe alias of Atlantic/Faroe
[FO] FAROE ISLANDS [+1] Atlantic/Faroe Canonical
[NO] NORWAY [+1] Atlantic/Jan Mayen alias of Europe/Oslo
[PT] PORTUGAL (MADEIRA) [+0] Atlantic/Madeira Canonical
[IS] ICELAND [+0] Atlantic/Reykjavik Canonical
[GS] SOUTH GEORGIA AND SOUTH SANDWICH ISLANDS [-2] Atlantic/South Georgia Canonical
[SH] SAINT HELENA, ASCENSION AND TRISTAN DA CUNHA [+0] Atlantic/St Helena alias of Africa/Abidjan
[FK] FALKAN ISLANDS [-3] Atlantic/Stanley Canonical
[NL] NETHERLANDS [+1] Europe/Amsterdam Canonical
[AD] ANDORRA [+1] Europe/Andorra Canonical
[RU] RUSSIA [+4] Europe/Astrakhan Canonical
[GR] GREECE [+1] Europe/Athens Canonical
[GB] UNITED KINGDOM [+0] Europe/Belfast Alias of Europe/London
[RS] SERBIA [+1] Europe/Belgrade Canonical
[DE] GERMANY [+1] Europe/Berlin Canonical
[SK] SLOVAKIA [+1] Europe/Bratislava Canonical
[BE] BELGIUM [+1] Europe/Brussels Canonical
[RO] ROMANIA [+2] Europe/Bucharest Canonical
[HU] HUNGARY [+1] Europe/Budapest Canonical
[DE] GERMANY [+1] Europe/Busingen Alias of Europe/Zurich
[MD] MOLDOVA [+2] Europe/Chisinau Canonical
[DK] DENMARK [+1] Europe/Copenhagen Canonical
[IE] IRELAND [+1] Europe/Dublin Canonical
[GI] GIBRALTAR [+1] Europe/Gibraltar Canonical
[GG] GUENRSEY [+0] Europe/Guernsey Alias of Europe/London
[FI] FINLAND [+2] Europe/Helsinki Canonical
[IM] ISLE OF MAN [+0] Europe/Isle of Man Alias of Europe/London
[TR] TURKEY [+3] Europe/Istanbul Canonical
[JE] JERSEY [+0] Europe/Jersey Alias of Europe/London
[RU] RUSSIA [+2] Europe/Kaliningrad Canonical
[UA] UKRAINE [+2] Europe/Kiev Canonical
[RU] RUSSIA [+3] Europe/Kirov Canonical
[PT] PORTUGAL [+0] Europe/Lisbon Canonical
[SI] SLOVENIA [+1] Europe/Ljubljana Canonical
[GB] UNITED KINGDOM [+0] Europe/London Canonical
[LU] LUXEMBURG [+1] Europe/Luxembourg Canonical

48

EUROPE continuation
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[ES] SPAIN [+1] Europe/Madrid Canonical
[MT] MALTA [+1] Europe/Malta Canonical
[AX] ALAND ISLANDS [+2] Europe/Mariehamn Alias of Europe/Helsinki
[BY] BELARUS [+3] Europe/Minsk Canonical
[MC] MONACO [+1] Europe/Monaco Canonical
[RU] RUSSIA [+3] Europe/Moscow Canonical
[CY] CYPRUS [+2] Europe/Nicosia Canonical
[NO] NORWAY [+1] Europe/Oslo Canonical
[FR] FRANCE [+1] Europe/Paris Canonical
[ME] MONTENEGRO [+1] Europe/Podgorica Alias of Europe/Belgrade
[CZ] CZECH REPUBLIC [+1] Europe/Prague Canonical
[LV] LATVIA [+2] Europe/Riga Canonical
[IT] ITALY [+1] Europe/Rome Canonical
[RU] RUSSIA [+4] Europe/Samara Canonical
[SM] SAN MARINO [+1] Europe/San Marino Canonical
[BA] BOSNIA AND HERZEGOVINA [+1] Europe/Sarajevo Canonical
[RU] RUSSIA [+4] Europe/Saratov Canonical
[UA] UKRAINE (CRIMEA) [+3] Europe/Simferopol Canonical
[MK] NORTH MACEDONIA [+1] Europe/Skopje Alias of Europe/Belgrade
[BG] BULGARIA [+2] Europe/Sofia Canonical
[SE] SWEDEN [+1] Europe/Stockholm Canonical
[EE] ESTONIA [+2] Europe/Tallinn Canonical
[AL] ALBANIA [+1] Europe/Tirane Canonical
[MD] MOLDOVA [+2] Europe/Tiraspol Alias of Europe/Chisinau
[RU] RUSSIA [+4] Europe/Ulyanovsk Canonical
[UA] UKRAINE [+2] Europe/Uzhgorod Canonical
[LI] LIETCHESTEIN [+1] Europe/Vaduz Alias of Europe/Zurich
[VA] VATICAN CITY [+1] Europe/Vatican Alias of Europe/Rome
[AT] AUSTRIA [+1] Europe/Vienna Canonical
[LT] LITHUANIA [+2] Europe/Vilnius Canonical
[RU] RUSSIA [+4] Europe/Volgograd Canonical
[PL] POLAND [+1] Europe/Warsaw Canonical
[HR] CROATIA [+1] Europe/Zagreb Alias of Europe/Belgrade
[UA] UKRAINE [+2] Europe/Zaporozhye Canonical
[CH] SWITZERLAND [+1] Europe/Zurich Canonical

49

EUROPE continuation
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[TF] FRENCH SOUTHERN AND ANTARTIC ISLANDS [+5] Indian/Kerguelen Canonical

[RE] RÉUNION [+4] Indian/Reunion Canonical
[PF] FRENCH POLINESIA [-9] Pacific/Gambier Canonical
[PF] FRENCH POLINESIA [-9:30] Pacific/Marquesas Canonical
[NC] NEW CALEDONIA [+11] Pacific/Noumea Canonical
[PN] PITCAIRN ISLANDS [-8] Pacific/Pitcairn Canonical
[PF] FRENCH POLINESIA [-10] Pacific/Tahiti Canonical
[WF] WALLIS AND FUTUNA [+12] Pacific/Wallis Canonical

50

OCEANIA
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[AU] AUSTRALIA (QUEENSLAND, MOST TERRITORIES) [+10] Australia/Brisbane Canonical
[AU] AUSTRALIA (NEW SOUTH WALES) [+9:30] Australia/Broken Hill Canonical
[AU] AUSTRALIA [+10] Australia/Canberra alias of Australia/Sydney
[AU] AUSTRALIA (TASMANIA KING ISLAND) [+9:30] Australia/Currie Canonical
[AU] AUSTRALIA (NORTHERN TERRITORY) [+9:30] Australia/Darwin Canonical
[AU] AUSTRALIA (WESTERN AUSTRALIA) [+8:45] Australia/Eucla Canonical
[AU] AUSTRALIA (TASMANIA) [+10] Australia/Hobart Canonical
[AU] AUSTRALIA (QUEENSLAND, WHITSUNDAY ISLANDS) [+10] Australia/Lindeman Canonical
[AU] AUSTRALIA (SOUTH) [+10:30] Australia/Lord Howe Canonical
[AU] AUSTRALIA (VICTORIA) [+10] Australia/Melbourne Canonical
[AU] AUSTRALIA (WESTERN AUSTRALIA) [+8] Australia/Perth Canonical
[AU] AUSTRALIA (NEW SOUTH WALES) [+10] Australia/Sydney Canonical
[AU] AUSTRALIA (SOUTH) [+9:30] Australia/Yancowinna of alias Australia/Broken Hill
[IO] BRITISH INDIAN OCEAN TERRITORY (BIOT) [+6] Indian/Chagos Canonical
[CX] CHRISTMAS ISLAND [+7] Indian/Christmas Canonical
[CC] COCOS ISLANDS [+6:30] Indian/Cocos Canonical
[TF] FRENCH SOUTHERN AND ANTARTIC ISLANDS [+5] Indian/Kerguelen Canonical
[WS] SAMOA [+13] Pacific/Apia Canonical
[NZ] NEW ZEALAND [+12] Pacific/Auckland Canonical
[PG] PAPUA NEW GUINEA [+11] Pacific/Bougainville Canonical
[NZ] NEW ZEALAND (CHATHAMAN ISLANDS) [+12:45] Pacific/Chatham Canonical
[FM] FEDERATED STATES OF MICRONESIA [+10] Pacific/Chuuk Canonical
[VU] VANUATU [+11] Pacific/Efate Canonical
[KI] KIRIBATI [+13] Pacific/Enderbury Canonical
[TK] TOKELAU [+13] Pacific/Fakaofo Canonical
[FJ] FIJI [+12] Pacific/Fiji Canonical
[TV] TUVALU [+12] Pacific/Funafuti Canonical
[PF] FRENCH POLINESIA [-9] Pacific/Gambier Canonical
[SB] SOLOMON ISLANDS [+11] Pacific/Guadalcanal Canonical
[KI] KIRIBATI [+14] Pacific/Kiritimati Canonical
[FM] FEDERATED STATES OF MICRONESIA [+11] Pacific/Kosrae Canonical
[MH] MARSHALL ISLANDS [+12] Pacific/Kwajalein Canonical
[MH] MARSHALL ISLANDS [+12] Pacific/Majuro Canonical
[PF] FRENCH POLINESIA [-9:30] Pacific/Marquesas Canonical
[NR] NAURU [+12] Pacific/Nauru Canonical
[NU] NIUE [-11] Pacific/Niue Canonical
[NF] NORFOLK ISLAND [+11] Pacific/Norfolk Canonical
[NC] NEW CALEDONIA [+11] Pacific/Noumea Canonical

51

OCEANIA CONTINUATION
COUNTRY COUNTRY OFFSET TIME CATEGORY
CODE NAME WITHOUT DST ZONE
[PW] PALAU [+9] Pacific/Palau Canonical
[PN] PITCAIRN ISLANDS [-8] Pacific/Pitcairn Canonical
[FM] FEDERATES STATES OF MICRONESIA [+11] Pacific/Pohnpei Canonical
[FM] FEDERATES STATES OF MICRONESIA [+11] Pacific/Ponape alias of Pacific/Pohnpei
[PG] PAPUA NEW GUINEA [+10] Pacific/Port Moresby Canonical
[CK] COOK ISLANDS [-10] Pacific/Rarotonga Canonical
[PF] FRENCH POLINESIA [-10] Pacific/Tahiti Canonical
[KI] KIRIBATI [+12] Pacific/Tarawa Canonical
[TO] TONGA [+13] Pacific/Tongatapu Canonical
[FM] FEDERATED STATES OF MICRONESIA [+10] Pacific/Truk alias of Pacific/Chuuk
[WF] WALLIS AND FUTUNA [+12] Pacific/Wallis Canonical
[FM] FEDERATED STATES OF MICRONESIA [+10] Pacific/Yap alias of Pacific/Chuuk

52

SPECIAL AREAS
OFFSET TIME CATEGORY
WITHOUT DST ZONE
[-12] Etc/GMT+12 Canonical
[-11] Etc/GMT+11 Canonical
[-10] Etc/GMT+10 Canonical
[-9] Etc/GMT+9 Canonical
[-8] Etc/GMT+8 Canonical
[-7] Etc/GMT+7 Canonical
[-6] Etc/GMT+6 Canonical
[-5] Etc/GMT+5 Canonical
[-4] Etc/GMT+4 Canonical
[-3] Etc/GMT+3 Canonical
[-2] Etc/GMT+2 Canonical
[-1] Etc/GMT-1 Canonical
[+0] Etc/GMT Canonical
[+0] Etc/GMT-0 alias of Etc/GMT
[+0] Etc/GMT+0 alias of Etc/GMT
[+0] Etc/GMT0 alias of Etc/GMT
[+0] Etc/UTC Canonical
[+0] GMT alias of Etc/GMT
[+1] Etc/GMT+1 Canonical
[+2] Etc/GMT-2 Canonical
[+3] Etc/GMT-3 Canonical
[+4] Etc/GMT-4 Canonical
[+5] Etc/GMT-5 Canonical
[+6] Etc/GMT-6 Canonical
[+7] Etc/GMT-7 Canonical
[+8] Etc/GMT-8 Canonical
[+9] Etc/GMT-9 Canonical
[+10] Etc/GMT-10 Canonical
[+11] Etc/GMT-11 Canonical
[+12] Etc/GMT-12 Canonical
[+13] Etc/GMT-13 Canonical
[+14] Etc/GMT-14 Canonical

The following are codes which are not being used in the present, we include it because they appear in the database and maybe one can use them for
some purpose.

53

Time Zone deprecated Corresponding Actual Time Zone
Australia/ACT to Australia/Sydney
Australia/LHI Australia/Lord Howe
Australia/NSW Australia/Darwin
Australia/North Australia/Sydney
Australia/Queensland Australia/Brisbane
Australia/South Australia/Adelaide
Australia/Tasmania Australia/Hobart
Australia/Victoria Australia/Melbourne
Australia/West Australia/Perth
Brazil/Acre Brazil/Rio Branco
Brazil/DeNoronha Brazil/Noronha
Brazil/East Brazil/Sao Paulo
Brazil/West Brazil/Manaus
Canada/Atlantic America/Halifax
Canada/Central America/Winipeg
Canada/Eastern America/Toronto
Canada/Mountain America/Edmonton
Canada/Newfoundland America/St Johns
Canada/Pacific America/Vancouver
Canada/Saskatchewan America/Regina
Canada/Yukon America/Whitehorse
CET Europe/Paris
Chile/Continental America/Santiago
Chile/EasterIsland Pacific/Easter
CST6CDT America/Chicago
Cuba America/Havana
EET Europe/Sofia
Egypt Africa/Cairo
Eire Europe/Dublin
EST America/Cancun
EST5EDT America/New York
Etc/Greenwich Etc/GMT
Etc/UCT
Etc/Universal Etc/UTC
Etc/Zulu Etc/UTC
GB Europe/London
GB-Eire Europe/London
GMT+0 Etc/GMT
GMT-0 Etc/GMT
GMT0 Etc/GMT
Greenwich Etc/GMT
HST Pacific/Honolulu
Hongkong Asia/Hong kong

Time Zone deprecated Corresponding Actual Time Zone
Iceland Atlantic/Reykjavik
Iran Asia/Teheran
Israel Asia/Jerusalem
Jamaica America/Jamaica
Japan Asia/Tokyo
Kwajalein Pacific/Kwajalein
Libya Africa/Tripoli
MET Europe/Paris
MST America/Phoenix
MST7MDT America/Denver
Mexico/BajaNorte America/Tijuana
Mexico/BajaSur America/Mazatlan
Mexico/General America/Mexico City
NZ America/Auckland
NZ-CHAT America/Chatham
Navajo America/Denver
PRC Asia/Shanghai
Poland Europe/Warsaw
Portugal Europe/Lisbon
PST8PDT America/Los Angeles
ROC Asia/Taipei
ROK Asia/Seul
Singapore Asia/Singapore
Turkey Europe/Istanbul
UCT Etc/UCT
Universal Etc/UTC
US/Alaska America/Anchorage
US/Aleutian America/Adak
US/Arizona America/Phoenix
US/Central America/Chicago
US/East-Indiana America/Indiana/Indianapolis
US/Eastern America/New York
US/Hawaii America/Honolulu
US/Indiana-Starke America/Indiana/Knox
US/Michigan America/Detroit
US/Mountain America/Denver
US/Pacific America/Los Angeles
US/Pacific-New America/Los Angeles
US/Samoa Pacific/Pago Pago
WET Europe/Lisbon
W-SU Europe/Moscow
Zulu Etc/UTC

54

	1 Introduction
	1.1 Formal Verification
	1.2 About time and calendars
	1.3 Local time and time zones

	2 Formal Vindications Time Manager Behavior
	2.1 The calendar in The Coq Time Library
	2.2 General remarks on the extraction
	2.3 Datatypes
	2.4 Functions
	2.5 Error messages

	3 Coq References
	A Tables
	B tz Tables

