
The OCaml documentation for FV Time

Formal Vindications S.L.∗

September, 2022

∗Project funded by the Spanish Ministry of Science, Innovation and Universities, the State Agency for Research and the
European Regional Development Fund (ERDF).

1

Contents
1 Context 3

2 File structure 3

3 Compilation 3

4 The UTC standard 3

5 A new notion for consistent time arithmetic 5
5.1 Shift functions . 5
5.2 Add-formal functions . 6

6 FV Time Library: Main features 6

7 Module FVTM : The OCaml extraction of FV Time 6

2

1 Context
The FV Time Library is a Coq-verified implementation of the UTC standard with some extra utilities to
make it more usable for both critical and regular programming. Currently, this library is only available in
the OCaml language1.

In this manual we present the documentation for the extract OCaml code, to use natively from other
OCaml applications.

2 File structure
The files directly extracted from Coq to OCaml, and thus verified, are FVTM.ml (the code itself) and FVTM.mli
(the headers). They can be used directly as OCaml libraries. They make use of the Coq implementation for
OCaml primitive integers. Below we describe the files and what each of them does.

• FVTM.ml, FVTM.mli: The code and headers extracted directly from Coq.

• uint63.ml, uint63.mli: The code and headers provided by Coq for the extraction to OCaml’s prim-
itive machine integers.

3 Compilation
Any method for compilation of OCaml using modules works. If you have an OCaml development, FV Time’s
code files just need to be added to the it to compile, as shown in Figure 1.

4 The UTC standard
The UTC (Coordinated Universal Time) is the most widespread standard for measuring and representing
points in time. The counting of time is done according to *atomic clocks*.

UTC uses the Gregorian calendar to count days, which is the usual calendar: it accounts for the year,
the month and the day within the month. Some years are leap and have an extra day in February according
to the rule:

• Every year divisible by 400 is a leap year.

• Every year divisible by 4 but not by 100 is also a leap year.

• No other year is a leap year.

Seconds are counted following an atomic clock, i.e. all seconds have the exact same duration. But, since
the Earth’s rotation period slightly varies due to physical interactions, not all solar days have a duration of
86400 SI seconds. If no adjustment was made, the solar time would gradually differ from UTC. To avoid
this effect, the UTC standard introduces leap seconds.

Leap seconds are introduced by a committee of experts (IERS) with at least six months of advance, and
are impredictable in the long term. The only way to account for them is keeping an updated list of the past
leap seconds. Theoretically, leap seconds can be positive (if added) or negative (if removed), but since the
Earth tends to slow down, no negative leap second has ever happened.

The standard says that, when it occurs, a positive leap second is inserted between second 23:59:59 of a
chosen UTC calendar date and second 00:00:00 of the following date. The definition of UTC states that the
last day of December and June are preferred, with the last day of March or September as second preference,
and the last day of any other month as third preference. All leap seconds (as of 2017) have been scheduled
for either June 30 or December 31. The extra second is displayed on UTC clocks as 23:59:60. A negative

1As of now, we only extract to OCaml because it is the only language that has plans to have a verified extraction process.

3

Figure 1: Diagram for the compilation process.

4

leap second would suppress second 23:59:59 of the last day of a chosen month, so that second 23:59:58 of
that date would be followed immediately by second 00:00:00 of the following date.

Although the UTC standard includes the format "Y-M-D h:m:s", time by atomic clocks is actually
counted as a number of seconds (units of time) elapsed since some chosen point of time called epoch. This
number of seconds is called timestamp. The most common epoch used, and the one our library chooses,
is 1970-01-01 00:00:00. Then by definition its timestamp is 0 and any other timestamp starts counting from
that time on.

UTC differs from International Atomic Time (TAI) by 37, the number of leap seconds that have been
added. Most computer systems claim to implement UTC or GMT (which is not an official name) but actually
implement TAI, or Unix, which is equal to UTC not counting leap seconds.

5 A new notion for consistent time arithmetic
Practically all commercial libraries for dealing with times and timestamps use Unix, even if they claim to
use UTC. When adding and subtracting durations or time intervals to a given time, an issue arises due to
the irregular periods that the Gregorian calendar and UTC define. For systems that work in Unix, the issue
arises with months and years, because they don’t have a constant duration. What these libraries do is to
define an artificial operation on months and years that doesn’t respect basic arithmetical properties.

They define adding a month as adding one to the month component of the time. But of course, the result
of this operation is not always correct. For example, adding a month in this sense to 2009-01-31 14:32:54
yields 2009-02-31 14:32:54, which is not a valid time because February doesn’t have 31 days. Then, the
adopted solution is correct the wrong component by going back to the previous valid one, so the result would
be 2009-02-28 14:32:54. Similarly, they can add any number to the month component, carrying to the
year if necessary, and then correct the wrong component. For example, adding 24 months to 2008-02-29
15:00:00 gives 2010-02-28 15:00:00. Analogously, the operation for adding years is defined.

This operation does not behave as addition does. For example, if in the first example we subtract one
month to the result, we don’t get the original time. Instead, we get 2009-01-28 14:32:54. We can say that
1 − 1 ̸= 0!

Our library uses UTC, which means that this problem affects all the components to the left of seconds.
Not all minutes have the same duration, nor all hours, nor all days. Our solution is to implement two
different types of operations in time arithmetic. The first one, that we call shift functions, follows the same
logic that other libraries follow with months and years, but with all the components. The second one is a
definition of a new standard for durations called formal time, and operations called add-formal with it that
behave consistently with basic arithmetical properties.

5.1 Shift functions
In that context, we extrapolate the logic described above for months and years of libraries working in Unix
to the rest of the components for the UTC case. The shift function shifts a component of the time, carrying
to the left if necessary, and then if the result is invalid performs corrections on the wrong component(s) to
give a specific close previous valid time.

An example would be subtracting two days to the time 2016-12-31 23:59:60 (a leap second). With the
procedure above before the correction, the result is 2016-12-29 23:59:60. Since on that date there was no
leap second, a correction must be performed on the wrong component to give the previous valid time, hence
the final result is 2016-12-29 23:59:59.

We chose the shift name because these functions are not proper addition. We call them shift_utc func-
tions, and they have six instances: shift_utc_seconds, shift_utc_minutes, shift_utc_hours, shift_utc_days,
shift_utc_months, and shift_utc_years.

5

5.2 Add-formal functions
In order to have time arithmetic with the usual arithmetical properties, we have define a new standard called
formal time, that establishes standard durations for every component. A formal second is an atomic second,
and a formal minute is 60 formal seconds, etc. See formalTime for all the details.

We have chosen to define formal months as 30 formal days. Therefore, adding a formal month is a clear
arithmetical operation, consisting in adding a *constant* number of seconds (30 * 24 * 60 * 60 seconds).
In the example above, adding a formal month to 2009-01-31 14:32:54 yields 2009-03-02 14:32:54. The
result is always valid by construction (except when it goes beyond the minimum or maximum date).

Now, subtracting two formal days to the time 2016-12-31 23:59:60 yields 2016-12-30 00:00:00, which
lets us see that the constant 86400 cdot 2 has been subtracted.

We define these functions with the name add_formal, and they have six instances: add_formal_seconds,
add_formal_minutes, add_formal_hours, add_formal_days, add_formal_months, and add_formal_years.
We also have the generic add_formal and subtract_formal.

These functions satisfy desirable arithmetical properties, for example if t1 +∆t = t2, then t2 −∆t = t1,
i.e., 1 − 1 = 0.

Notice that the only add-formal function that behaves exactly as its shift counterpart is add_formal_seconds,
which is exactly the same as shift_utc_seconds.

6 FV Time Library: Main features
1. Fully formally verified using the Coq proof assistant.

2. Fully in UTC, including leap seconds.

3. Definition of the formal time standard: Durations are not well-defined in UTC, because due to leap
seconds minutes, hours, etc. do not have constant durations. Our library solves two critical issues by
introducing the formalTime standard for the time durations in UTC:

• Give constant definitions for durations or time intervals, allowing to group durations in units
bigger than seconds consistently.

• Regarding time arithmetic, the library implements two kind of functions for addition and
subtraction of time and durations.

– The shift_utc functions work as is common in other libraries (the detailed description is
below). Since durations are not constant, they do not satisfy certain basic arithmetical
properties as the one described in the next item.

– The add_formal functions are a new definition of addition and subtraction that works with
the formalTime standard, hence satisfy for a time t and integer n:
[Property of add_formal functions:] add_formal_X (add_formal_X t n) -n = t.
In an improper non-functional language, this means that if t1 +∆t = t2, then t2 −∆t = t1.

4. Includes a function to check the version number and last updated date. Different versions may give
different results due to the addition of leap seconds.

7 Module FVTM : The OCaml extraction of FV Time

type int63 = Uint63.t
A machine 63-bit integer. It can be used as signed or unsigned, depending on the function. Each
function controls the range of its input.

Unsigned integers range from 0 to 9223372036854775807.

6

Signed integers range from -4611686018427387904 to 4611686018427387903.

type date =
{ year : int63 ;

month : int63 ;
day : int63 ;

}
A record for dates. Valid values range from 1970-1-1 to 9999-12-31 and need to be valid UTC dates
in the sense of FVTM.valid_date[➦].

type time =
{ date_of_time : date ;

hour : int63 ;
minute : int63 ;
second : int63 ;

}
A record for times. Valid values range from 1970-1-1 00:00:00 to 9999-12-31 23:59:59 and need to be
valid UTC times in the sense of FVTM.valid_time[➦].

type clock =
{ chour : int63 ;

cminute : int63 ;
csecond : int63 ;

}
A record for clocks, i.e., the hour-minute-second part of a time. Valid values need to satisfy:

• 0 ≤ chour ≤ 23

• 0 ≤ cminute ≤ 59

• 0 ≤ csecond ≤ 60 (because we account for leap seconds)

type formalTime =
{ fyears : int63 ;

fmonths : int63 ;
fdays : int63 ;
fhours : int63 ;
fminutes : int63 ;
fseconds : int63 ;

}
A record for formalTime, composed of six values that represent a time interval duration in formal
time units:

• 1 formal second = 1 atomic second

• 1 formal minute = 60 formal seconds

• 1 formal hour = 60 formal minutes

• 1 formal day = 24 formal hours

• 1 formal month = 30 formal days

• 1 formal year = 365 formal days

The value of each component is restricted to avoid overflowing the maximum FVTM.int63[➦] when
operating with a formalTime. The following must hold:

7

• 0 ≤ fyears ≤ 2924712086,

• 0 ≤ fmonths ≤ 35583997055,

• 0 ≤ fdays ≤ 1067519911673,

• 0 ≤ fhours ≤ 25620477880152,

• 0 ≤ fminutes ≤ 1537228672809129,

• 0 ≤ fseconds ≤ 92233720368547757.

These are the only restrictions for a formalTime when given as an argument. As output, a
formalTime is always given in normal form, meaning that the components satisfy the following
conditions too:

• fseconds < 60,

• fminutes < 60,

• fhours < 24,

• fdays < 30,

• fmonths ≤ 12, and if fdays ≤ 5 then fmonths < 12.

This last condition is because 12 formal months are 360 formal days, less than a formal year. Thus, it
is allowed to say 0-12-4-0-0-0, but if we want to add one more formal day, then the expression
becomes 1-0-0-0-0-0.

type 'a possibly =
| Result of 'a

There are no errors and the result of the operation is returned

| InvalidDate of date
The given FVTM.date[➦] is invalid. Only dates in UTC (starting in 1970, ending in 9999) are

accepted

| InvalidTime of time
The given FVTM.time[➦] is invalid. Only times in UTC (with leap seconds and starting in

1970, ending in 9999) are accepted

| InvalidFormalTime of formalTime
The given FVTM.formalTime[➦] is invalid. Either some component is negative, or it is too big

and would cause overflow

| InvalidYear of int63
The given year is invalid. Only years between 1970 and 9999 are accepted

| InvalidMonth of int63
The given month is invalid. Months are a number between 1 and 12

| InvalidDay of int63 * int63 * int63
The given day is invalid. Only days between 1 and FVTM.days_of_month[➦] of the given year

and month are accepted

| InvalidHour of int63
The given hour is invalid. Hours are a number between 0 and 23

| InvalidMinute of int63
The given minute is invalid. Minutes are a number between 0 and 59

| InvalidSecond of date * int63 * int63 * int63

8

The given second is invalid. Only seconds between 0 and FVTM.max_second[➦] of the given
date, hour and minute are accepted

| InvalidClockSecond of int63
The given clock second is invalid. Clock seconds are a number between 0 and 60

| NumberOutOfBounds of int63
The given integer is out of bounds. Operating with it would lead to overflowing the minimum

or maximum time

| Overflow
Overflow: with the input you gave, the resulting time would be before 1970 or after 9999

| InvalidOrderOfTimes of time * time
The first argument is smaller than the second one. Time difference can only be computed if the
first argument is greater than the second one

A record for the several errors that Coq can detect.

val max_year : int63

val is_leap_year_plain : int63 -> bool
A function which takes a natural number and, interpreting it as a year in the Gregorian calendar,
returns true if it is a leap year and false otherwise.

val is_leap_year : int63 -> bool possibly
If the given year is between 1970 and 9999, then returns a Result that satisfies the specification of
FVTM.is_leap_year_plain[➦].

Errors:

• InvalidYear if the given year year does not satisfy 1970 ≤ year ≤ 9999

val days_of_month_plain : int63 -> int63 -> int63
A function which takes two natural numbers and, interpreting the first one as a year in the Gregorian
calendar and the second one as a month, returns the number of days that the input month has on the
input year.

val days_of_month : int63 -> int63 -> int63 possibly
If the given year is between 1970 and 9999 and the given month is between 1 and 12, then
FVTM.days_of_month[➦] returns a Result that satisfies the specification of
FVTM.days_of_month_plain[➦].

Errors:

• InvalidYear if the first argument year does not satisfy 1970 ≤ year ≤ 9999

• InvalidMonth if the second argument month does not satisfy 1 ≤ month ≤ 12

val valid_date : date -> bool
Checks for the validity of a date in UTC. Given a date Y-M-D, valid or invalid, returns true if and
only if all the following hold:

• 1970 ≤ Y ≤ 9999;

• 1 ≤ M ≤ 12;

• 1 ≤ D ≤ FVTM.days_of_month[➦] Y M.

9

val mkDate : int63 -> int63 -> int63 -> date possibly
Produces a Result FVTM.date[➦] if the given arguments year, month and day are valid.

Errors:

• InvalidYear if not 1970 ≤ year ≤ 9999

• InvalidMonth if not 1 ≤ month ≤ 12

• InvalidDay if not 1 ≤ day ≤ FVTM.days_of_month[➦] year month

type leapSeconds = (date * bool) list
A type for expressing the list of leap seconds. Each element of the list represents a leap second, via a
pair with the FVTM.date[➦] in which the leap second happened, and a bool expressing if it was
positive (false) or negative (true).

val version_number : (Uint63.t * Uint63.t) * Uint63.t
Returns the version number of FVTM, relevant for the leap seconds

val version_date : date
Returns the date in which this version of FVTM was released, relevant for leap seconds.

val ls2022 : leapSeconds
The list of leap seconds as of May 2022

val le_date_plain : date -> date -> bool
A function which takes two dates as input, and returns true if the first one is smaller or equal to the
second one and false otherwise, according to the chronological order.

val lt_date_plain : date -> date -> bool
A function which takes two dates as input, and returns true if the first one is strictly smaller than
the second one and false otherwise, according to the chronological order.

val le_date : date -> date -> bool possibly
If the given dates are valid, returns a Result that satisfies the specification of
FVTM.le_date_plain[➦].

Errors:

• InvalidDate if any of the arguments is not a FVTM.valid_date[➦]

val lt_date : date -> date -> bool possibly
If the given dates are valid, returns a Result that satisfies the specification of
FVTM.lt_date_plain[➦].

Errors:

• InvalidDate if any of the arguments is not a FVTM.valid_date[➦]

val max_second_plain : leapSeconds -> date -> int63 -> int63 -> int63
A function which takes a list of leap seconds, a date and two natural numbers representing the hour
and minute, and returns the number of seconds that the minute had on that date and hour according
to the list of leap seconds.

10

val max_second : date -> int63 -> int63 -> int63 possibly
If the given date is valid, the hour is at most 23 and the minute is at most 59, returns a Result that
satisfies the specification of FVTM.max_second_plain[➦] applied with the leap seconds of
FVTM.ls2022[➦].

Errors:

• InvalidDate if for the given date d, FVTM.valid_date[➦] d = false

• InvalidHour if for the given hour h, not 0 ≤ h ≤ 23

• InvalidMinute if for the given minute m, not 0 ≤ m ≤ 59

val valid_time : time -> bool
Checks for the validity of a time in UTC. Given a time Y-M-D h:m:s, valid or invalid, returns true if
and only if all the following hold:

• FVTM.valid_date[➦] Y-M-D = true;

• 0 ≤ h ≤ 23;

• 0 ≤ m ≤ 59;

• 0 ≤ s ≤ FVTM.max_second_plain[➦] Y-M-D h m.

val clock_of_time_plain : time -> clock
A function which takes a FVTM.time[➦] and returns its corresponding FVTM.clock[➦].

val clock_of_time : time -> clock possibly
If the given time is valid, returns a Result that satisfies the specification of
FVTM.clock_of_time_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

val mkClock : int63 -> int63 -> int63 -> clock possibly
Produces a Result FVTM.clock[➦] if the given arguments chour, cminute and csecond are valid.

Errors:

• InvalidHour if not 0 ≤ hour ≤ 23

• InvalidMinute if not 0 ≤ minute ≤ 59

• InvalidClockSecond if not 0 ≤ second ≤ 60

val mkTime :
int63 ->
int63 ->
int63 ->
int63 -> int63 -> int63 -> time possibly

Produces a Result FVTM.time[➦] if the given arguments year, month, day, hour, minute and second
are valid.

Errors:

• InvalidYear if not 1970 ≤ year ≤ 9999

11

• InvalidMonth if not 1 ≤ month ≤ 12

• InvalidDay if not 1 ≤ day ≤ FVTM.days_of_month[➦] year month

• InvalidHour if not 0 ≤ hour ≤ 23

• InvalidMinute if not 0 ≤ minute ≤ 59

• InvalidSecond if not 0 ≤ second ≤ FVTM.max_second[➦] year-month-day hour minute

val le_time_plain : time -> time -> bool
A function which takes two times as input, and returns true if the first one is smaller or equal to the
second one and false otherwise, according to the chronological order.

val lt_time_plain : time -> time -> bool
A function which takes two times as input, and returns true if the first one is strictly smaller than
the second one and false otherwise, according to the chronological order.

val le_time : time -> time -> bool possibly
If the given times are valid, returns a Result that satisfies the specification of
FVTM.le_time_plain[➦].

Errors:

• InvalidTime if any of the arguments is not a FVTM.valid_time[➦]

val lt_time : time -> time -> bool possibly
If the given times are valid, returns a Result that satisfies the specification of
FVTM.lt_time_plain[➦].

Errors:

• InvalidTime if any of the arguments is not a FVTM.valid_time[➦]

val unix_epoch : time
A constant FVTM.time[➦] with value 1970-1-1 00:00:00, the Unix epoch.

val utc_timestamp_plain : time -> int63
A function which takes a FVTM.time[➦] and returns the number of seconds elapsed since the
FVTM.unix_epoch[➦] in UTC to that time.

val utc_timestamp : time -> int63 possibly
If the given time is valid, returns a Result that satisfies the specification of
FVTM.utc_timestamp_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

val from_utc_timestamp_plain : int63 -> time
A function which takes a natural number and, interpreting it as the number of seconds elapsed since
the FVTM.unix_epoch[➦], returns the corresponding time in UTC.

val from_utc_timestamp : int63 -> time possibly

12

Given a timestamp n, if n ≤ 253402300826 (the maximum timestamp), returns a Result that satisfies
the specification of FVTM.from_utc_timestamp_plain[➦].

Errors:

• NumberOutOfBounds if for the given number n, not 0 ≤ n ≤ 253402300826

type weekday =
| Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

A type for the days of the week.

val weekday_of_date_plain : date -> weekday
A function which takes a FVTM.date[➦] and returns its corresponding FVTM.weekday[➦] according to
the UTC calendar.

val weekday_of_date : date -> weekday possibly
If the given FVTM.date[➦] is valid, then FVTM.weekday_of_date[➦] returns a Result that satisfies
the specification of FVTM.weekday_of_date_plain[➦].

Errors:

• InvalidDate if for the given date d, FVTM.valid_date[➦] d = false

val sort_dates_plain : date list -> date list
A function which takes a list of dates and returns a list with the same elements in increasing order.

val sort_dates : date list -> date list possibly
If all the dates of the given list are valid, returns a Result that satisfies the specification of
FVTM.sort_dates_plain[➦].

Errors:

• InvalidDate if some date of the given list is not valid

val sort_times_plain : time list -> time list
A function which takes a list of times and returns a list with the same elements in increasing order.

val sort_times : time list -> time list possibly
If all the times of the given list are valid, returns a Result that satisfies the specification of
FVTM.sort_times_plain[➦].

Errors:

• InvalidDate if some time of the given list is not valid

val valid_formalTime : formalTime -> bool
A function which takes a FVTM.formalTime[➦] and checks if the components are on the bounds
detailed in the type description:

13

• Component fyear is less than or equal to 2924712086,
• component fmonth is less than or equal to 35583997055,
• component fday is less than or equal to 1067519911673,
• component fhour is less than or equal to 25620477880152,
• component fminute is less than or equal to 1537228672809129,
• and component fsecond is less than or equal to 92233720368547757.

val to_formalTime_plain : int63 -> formalTime
A function which takes a FVTM.int63[➦] representing an amount of seconds and returns the same
duration expressed in FVTM.formalTime[➦], filling the bigger components as much as possible.

val to_formalTime : int63 -> formalTime possibly
If the given FVTM.int63[➦] n satisfies n ≤ 92233720375632000, returns a Result that satisfies the
specification of FVTM.to_formalTime_plain[➦].

Errors:

• NumberOutOfBounds if n \geq 92233720375632000 (365 \cdot 86400 multiplied by the maximum
value for the formal year component)

val mkFormalTime :
int63 ->
int63 ->
int63 ->
int63 -> int63 -> int63 -> formalTime possibly

Produces a Result FVTM.time[➦] if the given arguments fyears, fmonths, fdays, fhours, fminutes
and fseconds are valid with respect to FVTM.valid_formalTime[➦].

Errors:

• NumberOutOfBounds if the arguments do not satisfy FVTM.valid_formalTime[➦]

val from_formalTime_plain : formalTime -> Uint63.t
A function which takes a FVTM.formalTime[➦] and returns the same duration expressed in seconds.

val from_formalTime : formalTime -> Uint63.t possibly
If the given FVTM.formalTime[➦] is valid, returns a Result that satisfies the specification of
FVTM.from_formalTime_plain[➦].

Errors:

• InvalidFormalTime if the bounds 1-6 given in formalTime are not respected

val add_formal_plain : time -> formalTime -> time
A function which takes a FVTM.time[➦] t and a FVTM.formalTime[➦] f and returns the result of
adding the duration expressed by f to t.

val add_formal : time -> formalTime -> time possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.add_formal_plain[➦].

Errors:

14

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• InvalidFormalTime if the bounds 1-6 given in formalTime are not respected

• Overflow if the result would be before 1970 or after 9999

val subtract_formal_plain : time -> formalTime -> time
A function which takes a FVTM.time[➦] t and a FVTM.formalTime[➦] f and returns the result of
subtracting the duration expressed by f to t.

val subtract_formal : time -> formalTime -> time possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.subtract_formal_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• InvalidFormalTime if the bounds 1-6 given in formalTime are not respected

• Overflow if the result would be before 1970 or after 9999

val time_difference_plain : time -> time -> formalTime
A function which takes two FVTM.time[➦] t, t' and a returns the duration elapsed between t and t'
in FVTM.formalTime[➦].

val time_difference : time -> time -> formalTime possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.time_difference_plain[➦].

Errors:

• InvalidTime if some of the given times is invalid with respect to FVTM.valid_time[➦]

• InvalidOrderOfTimes if for the given arguments t1, t2, FVTM.lt_time[➦] t1 t2 = false

val sec_time_difference_plain : time -> time -> int63
A function which takes two FVTM.time[➦] t, t' and a returns the duration elapsed between t and t'
in seconds.

val sec_time_difference : time -> time -> int63 possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.sec_time_difference_plain[➦].

Errors:

• InvalidTime if some of the given times is invalid with respect to FVTM.valid_time[➦]

• InvalidOrderOfTimes if for the given arguments t1, t2, FVTM.lt_time[➦] t1 t2 = false

val shift_utc_years_plain : time -> int63 -> time
A function which takes a time t and an integer n and shifts the year component of t the number of
times determined by the signed integer n. If the result of the shifting is between 1970 and 9999 but is
an invalid time, the date_of_time component is corrected to the closest previous valid date (if the
date is invalid), and after that, the second component is corrected to the closest previous valid
second (if the time is still invalid).

15

val shift_utc_years : time -> int63 -> time possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.shift_utc_years_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

val shift_utc_months_plain : time -> int63 -> time
A function which takes a time t and an integer n and shifts the month component of t the number of
times determined by the signed integer n, carrying if needed to the components to the left. If the
result of the shifting is between 1970 and 9999 but is an invalid time, the date_of_time component
is corrected to the closest previous valid date (if the date is invalid), and after that, the second
component is corrected to the closest previous valid second (if the time is still invalid).

val shift_utc_months : time -> int63 -> time possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.shift_utc_months_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

val shift_utc_days_plain : time -> int63 -> time
A function which takes a time t and an integer n and shifts the day component of t the number of
times determined by the signed integer n. If the result of the shifting is between 1970 and 9999 but is
an invalid time (due to leap seconds), the second component is corrected to the closest previous valid
second.

val shift_utc_days : time -> int63 -> time possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.shift_utc_days_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

val shift_utc_hours_plain : time -> int63 -> time
A function which takes a time t and an integer n and shifts the hour component of t the number of
times determined by the signed integer n, carrying if needed to the components to the left. If the
result of the shifting is between 1970 and 9999 but is an invalid time (due to leap seconds), the
second component is corrected to the closest previous valid second.

val shift_utc_hours : time -> int63 -> time possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.shift_utc_hours_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

16

• NumberOutOfBounds if the result would be before 1970 or after 9999

val shift_utc_minutes_plain : time -> int63 -> time
A function which takes a time t and an integer n and shifts the minute component of t the number of
times determined by the signed integer n, carrying if needed to the components to the left. If the
result of the shifting is between 1970 and 9999 but is an invalid time (due to leap seconds), the
second component is corrected to the closest previous valid second.

val shift_utc_minutes : time -> int63 -> time possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.shift_utc_minutes_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

val shift_utc_seconds_plain : time -> int63 -> time
A function which takes a time t and an integer n and shifts the second component of t the number of
times determined by the signed integer n, carrying to the components on the left if needed. In other
words, the function adds n seconds to the time t.

val shift_utc_seconds : time -> int63 -> time possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.shift_utc_seconds_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

val add_formal_seconds_plain : time -> int63 -> time
A function which takes a FVTM.time[➦] t and a FVTM.int63[➦] n and returns the result of adding n
formal seconds to t.

val add_formal_seconds : time -> int63 -> time possibly
If none of the error conditions below are met, returns a Result that satisfies the specification of
FVTM.add_formal_seconds_plain[➦].

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the result would be before 1970 or after 9999

val add_formal_minutes : time -> int63 -> time possibly
A function which takes a FVTM.time[➦] t and a FVTM.int63[➦] n and returns the result of adding n
formal minutes to t.

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

17

• NumberOutOfBounds if the integer argument n ≤ -76861433640456466 (minimum FVTM.int63[➦]
divided by the formal minute duration) or if the integer argument n > 76861433640456465
(maximum FVTM.int63[➦] divided by the formal minute duration), or if the result would be
before 1970 or after 9999

val add_formal_hours : time -> int63 -> time possibly
A function which takes a FVTM.time[➦] t and a FVTM.int63[➦] n and returns the result of adding n
formal hours to t.

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the integer argument n ≤ -1281023894007608 (minimum FVTM.int63[➦]
divided by the formal hour duration) or if the integer argument n > 1281023894007607
(maximum FVTM.int63[➦] divided by the formal hour duration), or if the result would be
before 1970 or after 9999

val add_formal_days : time -> int63 -> time possibly
A function which takes a FVTM.time[➦] t and a FVTM.int63[➦] n and returns the result of adding n
formal days to t.

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the integer argument n ≤ -53375995583651 (minimum FVTM.int63[➦]
divided by the formal day duration) or if the integer argument n > 53375995583650 (maximum
FVTM.int63[➦] divided by the formal day duration), or if the result would be before 1970 or
after 9999

val add_formal_months : time -> int63 -> time possibly
A function which takes a FVTM.time[➦] t and a FVTM.int63[➦] n and returns the result of adding n
formal months to t.

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the integer argument n ≤ -1779199852789 (minimum FVTM.int63[➦]
divided by the formal month duration) or if the integer argument n > 1779199852788 (maximum
FVTM.int63[➦] divided by the formal month duration) or if the result would be before 1970 or
after 9999

val add_formal_years : time -> int63 -> time possibly
A function which takes a FVTM.time[➦] t and a FVTM.int63[➦] n and returns the result of adding n
formal years to t.

Errors:

• InvalidTime if for the given time t, FVTM.valid_time[➦] t = false

• NumberOutOfBounds if the integer argument n ≤ -146235604339 (minimum FVTM.int63[➦]
divided by the formal year duration) or if the integer argument n > 146235604338 (maximum
FVTM.int63[➦] divided by the formal year duration), or if the result would be before 1970 or
after 9999

18

	Context
	File structure
	Compilation
	The UTC standard
	A new notion for consistent time arithmetic
	Shift functions
	Add-formal functions

	FV Time Library: Main features
	Module FVTM : The OCaml extraction of FV Time

